реферат
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Реферат: Исследование истечения жидкости из отверстий и насадков

Реферат: Исследование истечения жидкости из отверстий и насадков

Реферат

Исследование истечения жидкости из отверстий и насадков


Распространенная в инженерной практике задача расчета истечения жидкости из резервуара через отверстия и насадки, состоит в установлении связи между напором в резервуаре и расходом или скоростью струи, вытекающей через отверстия или насадки, присоединенные к отверстию в стенке или в днище резервуара.

Малым называется такое отверстие, при расчете истечения через которое пренебрегают скоростью подхода жидкости и считают местные скорости жидкости во всех точках сжатого сечения практически одинаковыми, что наблюдается при d ≤ 0,1H, где d - диаметр отверстия, H -напор над центром отверстия.

Стенка считается в гидравлическом смысле тонкой, если ее толщина δ ≤ (2¸2,5)d. В этом случае толщина стенки не влияет на истечение жидкости и в расчет принимается только местное сопротивление, возникающее при сжатии струи. В частном случае края отверстия могут иметь заостренную форму (рис.1). Условия истечения жидкости в этих случаях будут совершенно одинаковыми: частицы жидкости приближаются к отверстию из всего прилежащего объема, двигаясь ускоренно по различным плавным траекториям. Струя отрывается от стенки у кромки отверстия и затем несколько сжимается. Узкое сечение С-С, в котором течение имеет параллельноструйный характер и кривизна тока незначительна, находится на расстоянии (0,5¸1)d от плоскости отверстия.

Рис. 1.


Сжатие струи обусловлено необходимостью плавного перехода от различных направлений движения жидкости, в том числе от радиального движения по стенке к осевому движению в струе. Степень сжатия струи характеризуется коэффициентом сжатия ε, представляющим собой отношение площади сжатого поперечного сечения струи SС к площади отверстия:

(1)

Истечение через отверстие может происходить при постоянном или переменном напоре. Если истечение жидкости через отверстие происходит в атмосферу или другую газовую среду, то такое отверстие называется незатопленным. Если истечение жидкости через отверстие происходит под уровень жидкости, а не в атмосферу, то такое отверстие называется затопленным.

При истечении жидкости через отверстие различают полное и неполное сжатие струи.

Рис. 2.

Полное сжатие происходит тогда, когда струя сжимается по всему периметру (рис. 2а). Неполное сжатие – когда в определенной части периметра отверстия сжатие струи не происходит вследствие примыкания этой части периметра струи к стенке сосуда (рис. 2б).

Полное сжатие струи разделяется на совершенное и несовершенное.

Совершенным сжатием называется такое сжатие, при котором стенки не оказывают влияния на степень сжатия струи. Экспериментальные исследования показали, что совершенное сжатие струи образуется при выполнения условия (рис. 2а):

при  - несовершенное сжатие.

Запишем уравнение Бернулли для сечения свободной поверхности жидкости 0-0 в резервуаре (рис. 1), где давление РА, а скорость можно считать равной нулю, до сжатого сечения струи С-С где она уже приняла цилиндрическую форму, а давление в ней, следовательно, сделалось равным давлению окружающей среды РА.

 (2)

Так как , , , то уравнение (2) примет вид:

(3)

Отсюда скорость истечения

(4)

или

(5)

где

(6) – коэффициент скорости.

В случае идеальной жидкости , следовательно,  и скорость истечения идеальной жидкости (теоретическая скорость):

(7)

Тогда из формулы (5) можно заключить, что коэффициент скорости φ есть отношение действительной скорости истечения к скорости истечения идеальной жидкости (теоретической скорости):

(8)

Действительная скорость истечения V всегда несколько меньше идеальной из-за наличия сопротивления, следовательно, коэффициент скорости φ всегда меньше единицы.

Расход жидкости

(9)

Обозначим , тогда


(10)

где

 - коэффициент расхода(10а)

Из формулы (10)

(11)

где

(11а)

Это значит, что коэффициент расхода есть отношение действительного расхода к теоретическому расходу QТ, который имел бы место при отсутствии сжатия струи и сопротивления (теоретический расход). Величина QТ не является расходом при истечении идеальной жидкости, так как сжатие струи будет иметь место и при отсутствии гидравлических потерь.

Действительный расход всегда меньше теоретического и, следовательно, коэффициент расхода всегда меньше единицы.

Коэффициент сопротивления определяется по формуле (6) (при ):

(12)

Как показали результаты экспериментальных исследований, при истечении через малые круглые отверстия в тонкой стенке при совершенном сжатии и турбулентном режиме

маловязких жидкостей (воды, бензола, керосина и др.) коэффициенты истечения мало изменяются и при расчетах можно принимать следующие их значения:  (13)

Насадком называют короткую трубку длиной (3¸4)d, прикрепленную к отверстию. Существуют следующие виды насадков: цилиндрические – внешний (рис. 3а) и внешний (рис. 3б); конические - сходящиеся (рис. 3в) и расходящиеся (рис. 3г); коноидальные (рис. 3д), диффузорные или комбинированные (рис. 3е)

Цилиндрический внешний насадок, называемый еще насадком Вентури, широко применяется на практике, например, в гидротехнических сооружениях. На практике такой насадок часто получается в тех случаях, когда выполняется сверление в толстой стенке и не обрабатывается входная кромка. Истечение через такой насадок показано на рис. 3а. При входе жидкости в отверстие насадка вследствие изгиба линий токов происходит сжатие струи и на некотором расстоянии от входа в насадке образуется замкнутая отрывная зона. Затем струя постепенно расширяется до размеров отверстия и из насадка выходит полным сечением. Если струя истекает в среду с атмосферным давлением, то в зоне сжатия струи устанавливается (согласно уравнению Бернулли) абсолютное давление меньшее атмосферного, то есть вакуум, так как скорость истечения из насадка меньше скорости в сжатом сечении С-С. Вакуум можно замерить жидкостным вакуумметром, подключенным к сжатой зоне струи (рис. 3а), причем (14)

Если принять атмосферное давление равным 0,1 МПа, что соответствует 10 м вод. ст., то максимальное (теоретическое) значение вакуума hВАК = 10 м. Это значение вакуума получится при теоретическом (критическом) значении напора:

(15)

При заданном напоре Н за счет вакуума в зоне сжатия скорость истечения получается больше, чем при истечении из отверстия в тонкой стенке. Вместе с тем присоединение насадка к отверстию дает дополнительные потери по сравнению с истечением жидкости через отверстие без насадка, вызываемые внезапным расширением жидкости внутри насадка и трением потока о его внутреннюю поверхность. Обычно длина насадка Вентури LН = (3¸4)d. При меньших LН зона отрыва может стать незамкнутой (рис. 3ж) и истечение будет происходить как через малое отверстие в тонкой стенке.

Результаты экспериментальных исследований в зоне турбулентного течения показали, что для насадка Вентури (16)

Таким образом, коэффициент расхода насадка Вентури примерно на 30% больше, чем для отверстия в тонкой стенке, соответственно больше будет и расход жидкости при прочих равных условиях.

Цилиндрический внутренний насадок (рис. 3б) имеет большие гидравлические сопротивления, что приводит к уменьшению коэффициентов скорости и расхода: (17)

Конические сходящиеся насадки (рис. 3в) применяются для увеличения дальнобойности истечения (пожарные брандспойты, гидромониторы, фонтаны, эжекторы).

Оптимальный угол конусности 13О24’.

Конические расходящиеся насадки (рис. 3г) применяются в случаях, когда нужно за счет уменьшения скорости значительно увеличить давление, например, в реактивных гидротурбинах, центробежных насосах и др. Оптимальное значение угла конусности 5 – 7О. В коническом расходящемся насадке сжатие струи и вакуум больше, чем у цилиндрического внешнего. Потери энергии на внезапное расширение в нем значительно больше потерь в других насадках, что ведет к уменьшению коэффициентов скорости и расхода (коэффициент расхода определяется относительно площади выходного отверстия насадка).

Коноидальный насадок (рис. 3д) имеет входную часть, выполненную по форме струи, что снижает потери и увеличивает коэффициенты скорости и расхода. Коноидальный насадок еще называется соплом.

Диффузорный насадок (рис. 3е) представляет собой комбинацию коноидального насадка (сопла) и диффузора. Приставка диффузора к соплу влечет за собой снижение давления в узком месте насадка, а, следовательно, увеличение скорости и расхода жидкости через него (увеличение расхода до 2,5 раз по сравнению с соплом).

Основные характеристики насадков при турбулентных режимах течения (ReИД ≥ 105) приведены в таблице 1.

Таблица 1

Тип насадка μ φ ε ξ
1 Малое отверстие круглого сечения в тонкой стенке 0,62 0,97 0,64 0,065
2 Цилиндрический внешний насадок 0,82 0,82 1,0 0,5
3 Цилиндрический внутренний насадок 0,71 0,71 1,0 1,0
4 Конический сходящийся насадок 0,94 0,96 0,98 0,075
5 Конический расходящийся насадок 0,5 0,5 1,0 3,5
6 Коноидальный насадок 0,98 0,98 1,0 0,04

Непрерывно увеличивать расход жидкости через насадки нельзя, так как с ростом расхода увеличивается скорость в сжатом сечении и, как следствие этого, уменьшается давление. Если абсолютное давление при этом достигает значения, равного упругости насыщенных паров протекающей жидкости при данной температуре, то в данном сечении наступает интенсивное парообразование и выделение растворенных в жидкости газов, то есть местное кипение жидкости.

Рис.3 Типы насадков.

В расширяющейся части струи скорость падает, давление растет и кипение жидкости прекращается (выделившиеся пары конденсируются, а газы постепенно растворяются). Так как объем образовавшейся при конденсации жидкости значительно меньше объема, который занимал пар, то в образовавшуюся пустоту устремляется с большой скоростью жидкость, окружающая объемчик пара. Двигающиеся навстречу друг другу частицы жидкости соударяются, образуется гидравлический удар, то есть местное повышенное давление. Такое явление называется кавитацией. Кавитация сопровождается характерным шумом и эрозионным разрушением стенок канала, а также снижением пропускной способности гидравлических систем, так как часть поперечного сечения канала занимает выделившийся пар и растворенные в жидкости газы.

Описание экспериментальной установки.

Схема экспериментальной установки показана на рис. 4. Вода из напорного бака 1 подается через вентиль 2 в горизонтально расположенный трубопровод 3 со сменными насадками. В напорный бак вода непрерывно подается из водопровода через вентиль 4 и успокоительную сетку 5. Постоянство уровня жидкости в напорном баке осуществляется с помощью переливной трубы 6 с вентилем 7. Для определения напора Н служит пьезометрическая трубка 8 со шкалой, имеющей нулевое деление на уровне центра отверстия.

Для измерения координат точек вытекающей струи жидкости используется щит 9 из оргстекла с нанесенной на нем шкалой. Жидкость стекает в мерный бак 10, а из него в систему слива.

Для контроля температуры воды в напорном баке имеется термометр 11.

Рис. 4


Список литературы

1.  Осипов П.Е. Гидравлика, гидравлические машины и гидропривод. М.: Лесная промышленность, 1981, 424 с.

2.  Идельчик И.Е. Справочник по гидравлическим сопротивлениям. – М.: Машиностроение, 1975, 559 с.

3.  Башта Т.М. и др. Гидравлика, гидромашины и гидроприводы. – М.: Машиностроение, 1982, 423 с.

4.  Лабораторный практикум по гидравлике, гидромашинам и гидроприводу / Под ред. Вильнера Я.М.: Минск, Высшая школа, 1980, 224 с.

5.  Лабораторный курс гидравлики, насосов и гидропередач / Под ред. Руднева С.С. и Подвидза Л.Г. – М.: Машиностроение, 1974, 415 с.


© 2011 Банк рефератов, дипломных и курсовых работ.