реферат
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Курсовая работа: Технология переработки из расплавов аморфных и кристаллизующихся веществ

Курсовая работа: Технология переработки из расплавов аморфных и кристаллизующихся веществ

КУРСОВАЯ РАБОТА

ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ИЗ РАСПЛАВОВ АМОРФНЫХ И КРИСТАЛЛИЗУЮЩИХСЯ ВЕЩЕСТВ


Оглавление

Введение........................................................................................................... 3

1. Классификация термопластичных материалов.......................................... 4

1.1 Классификация термопластов по эксплуатационным свойствам............ 4

1.2 Классификация термопластов по объему производства......................... 5

1.3 Классификация термопластов по химической структуре........................ 5

2. Технология экструзии полимеров............................................................ 13

2.1 Типы и устройство экструдеров............................................................. 13

2.2 Поведение полимера при экструзии....................................................... 16

2.3 Основные параметры процесса экструзии............................................. 18

3. Технологические параметры переработки (литья) термопластичных полимеров      19

3.1 Принципы качественного литья.............................................................. 20

3.1.1 Влияние конструкции изделия и пресс-формы на процесс уплотнения при литье термопластов................................................................................................. 20

3.1.2 Процесс уплотнения для аморфных и кристаллизующихся материалов      21

3.2 Разновидности процесса литья............................................................... 32

3.2.1 Литье тонкостенных изделий............................................................... 32

3.2.2 Литье при низком давлении................................................................. 38

3.2.3 Технологии литья термопластов с газом............................................. 40

Литература..................................................................................................... 50


Введение

Промышленность пластмасс развивается сегодня исключительно высокими темпами. Начиная с 60-х годов, производство полимеров, основную долю которых составляют пластмассы, удваивается через каждые 5 лет, и эти темпы роста в соответствии с прогнозом на период до 1990 г. сохранятся.

Характерным является опережающее развитие в промышленности пластмасс термопластичных материалов, составляющих в среднем около 70 % от общего количества производимых пластмасс.

Современные тенденции создания малоотходной и безотходной технологии приводят к тому, что рост производства пластмасс неизбежно сопровождается совершенствованием технологических процессов, внедрением нового оборудования для синтеза и переработки.

В области синтеза пластмасс преимущественное развитие получают процессы полимеризации в массе (получение полиэтилена, полистирола) по сравнению с водно-дисперсионными методами. Все интенсивнее внедряются непрерывные процессы с высоким уровнем автоматизации и механизации, вытесняя периодические процессы. Возрастают единичные мощности технологического оборудования (полимеризаторов, сушилок, экструдеров и др.) и совершенствуется их конструкция. Улучшается качество сырья, используемого в процессах синтеза и конфекционирования. [1]

 


1. Классификация термопластичных материалов

К термопластичным материалам или термопластам относятся полимеры, которые при нагревании переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее. При охлаждении материала происходит обратный переход в твердое состояние. Поведение при нагревании отличает термопласты от термореактивных материалов или реактопластов, которые отверждаются за счет химической реакции и не способны далее переходить в жидкое агрегатное состояние.

1.1 Классификация термопластов по эксплуатационным свойствам

Термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.

Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):

- Материалы общетехнического назначения или общего назначения;

- Пластмассы инженерно-технического назначения или конструкционные пластмассы;

- Суперконструкционные или высокотермостойкие полимеры.

Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов (TPE), которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения и инженерно-технического назначения.

За рубежом классификации полимеров по уровню эксплуатационных свойств и их отнесение к той или другой группе материалов в настоящее время носит вспомогательный характер и используется лишь в целях упорядочения информации.

Материалы специального назначения

Иногда условно выделяют группу материалов специального назначения (специальные пластмассы, функциональные пластмассы). К ней относят материалы, обладающие особыми, иногда уникальными, свойствами. Эти свойства могут обеспечиваться особой химической структурой полимера или специальными наполнителями и добавками. Среди специальных добавок - электропроводящие добавки (антистатические, электропроводящие, ЭМИ-экранирующие материалы), антифрикционные добавки (материалы с пониженным коэффициентом трения), фрикционные добавки (материалы с повышенным коэффициентом трения) и др. [2 – 5]

1.2 Классификация термопластов по объему производства

Нередко в литературе выделяют группу крупнотоннажных материалов, к которым относят полиэтилен (PE) и полипропилен (PP), основные стирольные пластики (PS) и особенно АБС (ABS), акрилаты, ПВХ (PVC) и бутылочный ПЭТ (PET).

1.3 Классификация термопластов по химической структуре

Классификация, основанная на химической структуре полимеров, включает множество аспектов. Остановимся только на тех вопросах и терминах, которые часто упоминаются в технологической литературе.

Функциональные группы термопластов

По химическому строению, определяемому наличием в структуре определенных функциональных групп, литьевые термопластичные материалы обычно подразделяют на несколько групп. Современная промышленность выпускает большое количество типов полиолефинов (PO), важнейшими из которых являются группы полиэтиленов (PE) и полипропиленов (PP). Многочисленные типы материалов представлены в группах стирольных пластиков (PS), полиамидов (PA), сложных полиэфиров.

Традиционно выделяют группы полимеров на основе целлюлозы, фторполимеров или фторопластов. Акриловых полимеры или акрилаты (acrylic) обычно являются сополимерами. Изготовители этих материалов часто указывают только принадлежность материала к данной группе и не приводят данные о химической структуре сополимера. [6]

Примечание: 1 - Карбонатная группа содержит сложноэфирную группу, поэтому обычно поликарбонаты относят к сложным полиэфирам.

Гомополимеры. Сополимеры. Интерполимеры

Полимеры, построенные из одинаковых мономеров, называют гомополимерами, из разных - сополимерами.

По структуре сополимеры делят на несколько типов:

- блок-сополимер - с регулярным чередованием последовательностей (блоков) звеньев в основной цепи;

- статистический сополимер - с нерегулярным чередованием последовательностей звеньев;

- привитой сополимер - имеет основную цепь в виде гомополимера или сополимера, к которой присоединены боковые цепи;

- чередующийся или альтернатный сополимер - с регулярным чередованием звеньев в основной цепи.

В последнее время большое развитие получили интерполимеры - сополимеры, образующие гомогенную структуру (компоненты не выделяются в отдельные фазы).

Помимо двойных сополимеров, построенных из двух типов мономерных звеньев, выпускаются тройные сополимеры, состоящие из трех типов звеньев, а также сополимеры с четырьмя и большим количеством типов звеньев. Тройными сополимерами являются АБС-пластики (ABS), ACA-сополимер (ASA) и др.

Стереоизомеры

Для многих типов материалов (полипропилен, полистирол и др.) помимо химической формулы большое значение имеет стереоизомерия - тип пространственной конфигурации боковых групп атомов относительно полимерной цепи. Наиболее важные типы стереоизомеров:

- изотактический - в схематичном изображении (например, в "проекции Фишера") боковые группы расположены "по одну сторону" условной плоскости полимерной цепи;

- синдиотактический - в схематичном изображении боковые группы последовательно чередуются "по одну и другую сторону" условной плоскости полимерной цепи;

- атактическиий - в схематичном изображении боковые группы располагаются беспорядочно "по одну и другую сторону" условной плоскости полимерной цепи.

Реальная пространственная структура стереоизомеров является более сложной, из-за того, что макромолекула закручивается в спираль.

Развитие технологии синтеза полимеров с одним центром полимеризации на металлоценовых и неметаллоценовых катализаторах позволило наладить в последние годы промышленный выпуск различных стереоизомеров.

В качестве примера влияния стереоизомерии на эксплуатационные свойства материала можно привести синдиотактический полистирол (SPS), являющийся кристаллизующимся материалом с высокой термостойкостью, в отличие от обычного аморфного атактического полистирола.

Классификация термопластов по способности к кристаллизации

Термопластичные материалы делят на две группы в зависимости от способности к кристаллизации [7]:

- Аморфные полимеры: ABS, GPPS, HIPS, PC, PES, PMMA, PPO, PVC и др.

- Кристаллизующиеся полимеры: PA 6, PA 66, PBT, PE, PET, POM, PP, PPS и др.

В кристаллизующихся полимерах при охлаждении расплава только часть полимера переходит в кристаллическое состояние, характеризующееся дальним порядком. Другая часть имеет аморфное состояние.

Иногда выделяют группу частично кристаллизующихся полимеров, к которым относят полимеры со сравнительно небольшой степенью кристалличности (менее 80 или 60% по разным источникам).

Способность к кристаллизации - очень важное свойство материалов, определяющее их эксплуатационные свойства и поведение при переработке. Оно обязательно должно учитываться при конструировании изделий и пресс-форм и выборе технологического режима литья. Кристаллизующиеся материалы имеют высокий уровень усадки и анизотропии усадки.

Деление на аморфные и кристаллизующиеся полимеры является в некоторой степени условным и относится только к определенным условиям, т.к. способность к кристаллизации зависит от множества факторов. Полимеры, которые ведут себя в условиях литья под давлением, как аморфные, в других условиях могут кристаллизоваться. Например, аморфный поликарбонат кристаллизуется при сверхвысоких давлениях (500 МПа), при длительной выдержке (8 дней при 180 °С) и под действием некоторых растворителей (например, ацетона).

Особенности формования аморфных полимеров

Аморфные полимеры при изготовлении из них расплава изделий переходят в твердое состояние без изменения фазового (аморфного) состояния. Параметром изменения надмолекулярной структуры полимеров является степень ориентации. Ориентация макромолекул связана со сдвигом материала под действием напряжений в процессе формования.

В процессе течения высокоэластичная деформация достигает определенной величины, определяемой свойствами материала, режимами и условиями течения. Поэтому после заполнения формы она (высокоэластичная деформация) релаксирует (уменьшается). Но из-за охлаждения материала в прессформе (температура прессформы ниже температуры стеклования) уменьшается скорость релаксации. Уменьшение скорости и ограничение продолжительности релаксационного процесса приводит к остаточной (неполной) релаксации (сохраняющейся в деталях). Часть ориентированных полимерных цепей при этом остаются «замороженными» в неравновесных конформациях.

Ориентация распределена в продольном и поперечном сечении детали неравномерно. В результате возможности релаксации в начальные моменты впуска материала в прессформу ориентация уменьшена (отсутствие давления и неполный контакт с прессформой). Далее при двухмерном течении (к стенкам прессформы и вглубь) по радиусу и длине ориентация неравномерна, а ее характер распределения определяет режим течения.

Эксплуатационные свойства изделий из аморфных полимеров существенно зависят от степени ориентации в процессе формования: упорядоченная при ориентации структура полимера приводит к увеличению прочности в направлении течения и уменьшению прочности в направлении перпендикулярном течению материала, образованию внутренних напряжений. Это может приводить к растрескиванию изделий, образованию микротрещин (ухудшению оптических свойств, помутнению, появлению серебрения) особенно в местах спая встречных потоков материала, короблению, снижению размерной стабильности.

Особенности формования кристаллизующихся полимеров

При формовании изделия, расплав полимера кристаллизуется в результате теплопередачи его тепла более холодным стенкам прессформы. Скорость охлаждения в разных слоях различна: в слоях, касающихся прессформы - наибольшая, в средних слоях - наименьшая. Скорость охлаждения и напряжение сдвига существенно влияют на структурообразование. Выделяют две предельных скорости охлаждения V¢пр и V²пр и два предельных напряжения сдвига t¢пр и t²пр, которые условно разграничивают зависимость размеров и структурных образований на три участка. При охлаждении с высокими скоростями, больше V²пр, кристаллизация материала сопровождается только образованием зачатков кристаллитов и ламелярных образований; при охлаждении с низкими скоростями, ниже V¢пр, в полимере формируются развитые сферолиты; при охлаждении с промежуточной скоростью, в пределах V¢пр – V²пр, формируются промежуточные структурные образования, пропорционально скорости охлаждения. Охлаждение расплава полимера при низких напряжениях сдвига, меньше t¢пр, практически не создает деформированных сферолитов, они симметричны; при деформировании с высокими напряжениями сдвига, выше t²пр, формируются сноповидные или стержневые образования (вытянутые в направлении течения); при промежуточных напряжениях сдвига в процессе формования (t¢пр - t²пр) получают ориентированные сферолиты, степень ориентации зависит от напряжения сдвига.

Формирование слоевой структуры проявляется из-за интенсивного охлаждения и больших сдвиговых напряжений, особенно при литье под давлением. Поэтому структура деталей сложная. В поперечном сечении детали выделяют три структурные области, формируемые в три основных периода процесса литья под давлением.

Первая структурная область - поверхностная оболочка, образуется в период заполнения прессформы; вторая область - средний слой, формируется в период нарастания давления и выдержки под давлением; третья область - центральный слой, образуется в период спада давления. Поверхностная оболочка может состоять из трех слоев: первый слой - наружный - состоит из кристаллитов или ломелярных образований, она образуется при быстром охлаждении расплава и ориентации расплава при значительных напряжениях сдвига: слои материала в потоке поворачиваются и растягиваются - ориентируются; а при соприкосновении со стенками прессформы достигнутая ориентация фиксируется; средний слой - зона неразвитых сферолитов, которые либо слабо деформированы - ориентированы, либо недеформированы, так как эти слои охлаждаются со средними скоростями ( интервал V¢пр – V²пр), причем сферолитные образования , проходящие с низкими напряжениями сдвига получают недеформированными, а при напряжениях сдвига t²пр > t > t¢пр получают несимметричные - ориентированные сферолиты; центральный слой возникает при заполнении прессформыс высокими напряжениями сдвига, более t²пр, здесь получают сноповидные сферолиты - ориентированное состояние.

Средняя зона может состоять из двух слоев с различными размерами сферолитов: в наружном слое этой зоны, охлаждающемся со скоростью больше V¢пр возникают неразвитые сферолиты, внутренние слои охлаждаются с меньшими скоростями, меньшими V¢пр, и поэтому в ней возникают развитые сферолитные образования ( в это время, в период подпитки, низкие скорости течения и низкие напряжения сдвига). В случае литья материала в подогретую форму образуется одна зона, а скорость охлаждения в различных слоях зоны ниже предельной V¢пр.

Центральная зона может состоять также из двух зон. Эта зона образуется при охлаждении с низкими скоростями охлаждения и почти без сдвиговых напряжений, поэтому она состоит из развитых неориентированных сферолитов. Образование двух слоев определяют условия формования: наружный слой - без микропор, внутренний с микропорами; при охлаждении под давлением микропоры не возникают, при частичном охлаждении под давлением в незатвердевшем до снятия давления материале в результате усадки возникают микропоры.

Механические свойства изделий из кристаллизующихся полимеров связаны со слоевой структурой. Зоны центральная и средняя по механическим свойствам мало отличаются. Поверхностная зона оказывает решающее значение на свойства изделия и ее учитывают в расчетах на работоспособность в зависимости от структуры.

Влияние технологических параметров на слоевую структуру изделий

Эти параметры влияют на структуру, размеры слоев и зон изделий из кристаллизирующихся полимеров и их свойства. Требуемую структуру с заданными размерами зон и слоев в зависимости от условий эксплуатации изделия можно получить путем выбора технологических параметров.

Толщина поверхностной зоны зависит от температуры материала Т0 и прессформы Тф и времени ее заполнения. Увеличение Т0 и Тф уменьшает толщину этой зоны, а увеличение времени заполнения увеличивает ее. Толщина средней зоны также будет меньше при повышении Т0 и Тф и времени впуска; повышение давления Р и времени выдержки увеличивают толщину средней зоны. Толщина центральной зоны увеличивается с увеличением Т0 и Тф и практически не зависит от заполнения, давление оказывает незначительное влияние на нее.


2. Технология экструзии полимеров

Экструзия – способ получения изделий или полуфабрикатов из полимерных материалов неограниченной длины путем выдавливания расплава полимера через формующую головку (фильеру) нужного профиля. Экструзия, наряду с литьем пластмасс под давлением, является одним из самых популярных методов изготовления пластмассовых изделий. Экструзии подвергаются практически все основные типы полимерных материалов, как термопласты, таки и реактопласты, а также эластомеры.

В основном для экструзии пластмасс применяют шнековые, или червячные, экструдеры. Также существуют дисковые экструдеры. Для успешного производства продукции методом экструзии недостаточно только одного экструдера. Кроме него необходимо иметь еще несколько единиц оборудования, вместе составляющих экструзионную линию. Кроме того, существуют выдувные экструдеры, которые применяются в установках по получению изделий методом экструзионно-выдувного формования. Их описание, не входит в данную статью. Практически не встречаются экструдеры с вертикальными шнеками.

2.1 Типы и устройство экструдеров

1. Червячные экструдеры подразделяются на одношнековые, двухшнековые и многошнековые.

Наиболее простым оборудованием для экструзии является одношнековый (одночервячный) экструдер без зоны дегазации (рис. 1). Такие экструдеры широко применяются для производства пленок, листов, труб, профилей, в качестве одной из составных частей линий-грануляторов и т.д. Основными элементами экструдера являются обогреваемый цилиндр, винтовой шнек (с охлаждением или без него), сетки, размещаемые на решетке, и адаптер.

В зависимости от природы полимера, технологических режимов переработки применяются шнеки различного профиля с разным шагом и глубиной витков. В зависимости же от вида выпускаемого изделия применяют либо коротко-, либо длинношнековые машины, т. е. с малым или большим отношением длины L к диаметру D шнека (L/D). Значения D и L/D являются основными характеристиками одношнекового экструдера. Типоразмерный ряд экструдеров, выпускавшихся в Советском Союзе был основан на диаметрах шнека: D = 20; 32; 45; 63; 90; 125; 160; 200; 250 и 320 мм.

Схема одношнекового экструдера

Рис. 1. Схема одношнекового экструдера: 1- бункер; 2- червяк (шнек); 3- цилиндр; 4- полость для циркуляции воды; 5- нагреватель; 6- решетка с сетками; 7- формующая головка с адаптером

2. Двухшнековые экструдеры могут применяться как в тех же случаях, что и одношнековые, так и в специальных условиях, когда одношнековые экструдеры не справляются с задачами. В российских реалиях двухшнековые экструдеры в подавляющем большинстве случаев используются для экструзии ПВХ (поливинилхлорида) в изделия строительного назначения. Технология процесса экструзии ПВХ зачастую подразумевает применение порошкообразного основного сырья (ПВХ-композиции), которую невозможно переработать на стандартной одношнековой экструзионной линии. Как правило, двушнековые экструдеры в обязательном порядке оснащаются устройством дегазации. Двухшнековые экструдеры различают двух основных типов:

· экструдеры со шнеками, находящимися в зацеплении (с однонаправленным или противоположно направленным вращением шнеков);

· экструдеры со шнеками, не находящимися в зацеплении (с однонаправленным или противоположно направленным вращением шнеков).

3. Многошнековые экструдеры применяются сравнительно редко. К таким экструдерам можно отнести четырехшнековый экструдер, а также планетарный экструдер. Червячная система последнего состоит из одного центрального червяка и еще, как правило, 6 дополнительных шнеков, расположенного вокруг основного на одинаковом радиальном расстоянии. Эти шнеки называют планетарными, отсюда и название экструдера. Такая конструкция позволяет перерабатывать материалы, склонные к быстрой термической деструкции (часто – композиции ПВХ) без применения высоких температур, но со значительным смесительным эффектом и интенсивной дегазацией расплава.

4. Дисковые экструдеры относятся к достаточно редкому типу экструзионных машин современности. Работа дискового экструдера основана на перемещении полимерного материала и создании давления за счет адгезии полимера к подвижным частям экструдера. Такие экструдеры могут быть как однодисковыми, так и многодисковыми. Последний является наиболее современным вариантом и позволяют давать давление расплава на выходе в несколько раз превышающее давление расплава стандартного одношнекового экструдера. Однако, обычно это преимущество нивелируется высокой стоимостью многодискового экструдера вследствие его конструкционной сложности.


2.2 Поведение полимера при экструзии

Поведение полимера внутри экструдера рассмотрим на примере одношнековой экструзии гранулированного материала. Технологический процесс экструзии складывается из последовательной пластикации и перемещения материала вращающимся шнеком в зонах материального цилиндра. Различают следующие зоны – питания (I), пластикации (II), дозирования расплава (III).

Можно сказать, что деление шнека на зоны I-III достаточно условно, оно осуществляется по технологическому признаку и указывает на то, какую операцию в основном выполняет данный участок шнека. Цилиндр также имеет определенные длины зон обогрева. Длина этих зон определяется расположением нагревателей на его поверхности и их температурой. Границы зон шнека I-III и зон обогрева цилиндра могут не совпадать. Для обеспечения успешного перемещения материала большое значение имеют условия продвижения твердого материала из загрузочного бункера и заполнение межвиткового пространства, находящегося под воронкой бункера.

Загрузка сырья. Полимерный материал для экструзии, подаваемый в бункер, может быть в виде порошка, гранул, лент. Последний вид сырья характерен для переработки отходов промышленного производства пленок и осуществляется на специальных экструдерах, снабженных принудительными питателями-дозаторами, устанавливаемыми в бункерах. Равномерное дозирование материала из бункера обеспечивает хорошее качество экструдата.

Наиболее часто экструзией перерабатываются гранулированные пластики. Переработка полимера в виде гранул - оптимальный вариант питания экструдера. Гранулы полимера меньше склонны к "зависанию" и образованию пробок в бункере, чем порошок, а также гранулы легче пластицируются и гомогенизируются.

Загрузка межвиткового пространства щнека под воронкой бункера происходит на отрезке длины шнека, равном (1 - 1,5)D. При переработке многокомпонентных материалов для загрузки их в бункер применяются индивидуальные дозаторы: шнековые (объемные), вибрационные, весовые и т. п. Сыпучесть материала сильно зависит от его влажности: чем больше влажность, тем меньше сыпучесть. Поэтому гигроскопичные материалы необходимо сушить перед загрузкой в экструдер.

Применяя приспособления для принудительной подачи материала из бункера в материальный цилиндр, также удается существенно повысить производительность машины. При уплотнении материала в межвитковом пространстве шнека вытесненный воздух выходит обратно через бункер. Если удаление воздуха будет неполным, то он останется в расплаве и после прохождения через головку образует в изделии нежелательные полости.

При длительной работе экструдера возможен перегрев цилиндра под воронкой бункера и самого бункера. В этом случае гранулы начнут слипаться и прекратится их подача на шнек. Для предотвращения перегрева этой части цилиндра в нем делаются полости для циркуляции охлаждающей воды. Обычно зона загрузки является единственной охлаждаемой зоной современных экструдеров.

1. Зона питания (I). Поступающие из бункера гранулы или порошок полимера заполняет межвитковое пространство шнека зоны I и уплотняется.

2. Зона пластикации и плавления (II). В зоне II происходит подплавление полимера, примыкающего к поверхности цилиндра. В тонком слое расплава полимера происходят интенсивные сдвиговые деформации, как следствие материал пластицируется, что приводит к интенсивному смесительному эффекту. Основной подъем давления P расплава происходит на границе зон I и II. На этой границе образующаяся пробка из спрессованного материала как бы скользит по шнеку: в зоне I это твердый материал, в зоне II- плавящийся. Наличие этой пробки и создает основной вклад в повышение давления расплава. Запасенное на выходе из цилиндра давление расходуется на преодоление сопротивления сеток, течения расплава в каналах головки и формования экструдируемого профиля.

3. Зона дозирования (III). Расплавленная масса полимера продолжает гомогенизироваться, однако она все еще не является однофазной и состоит из расплавленных и твердых частиц. В конце зоны III пластик становится полностью гомогенным и готовым к продавливанию через чистящие сетки и формующую головку.

2.3 Основные параметры процесса экструзии

К технологическим параметрам переработки пластмасс методом экструзии относятся:

· температура по зонам экструдера,

· давление расплава,

· температура зон головки,

· режимы охлаждения экструдированного профиля.

Основными технологическими характеристиками экструдера являются длина шнека L, диаметр шнека D, соотношение L/D, скорость вращения шнека N, а также профиль шнека и степень изменения объема канала шнека.

Основной характеристикой формующего инструмента, состоящего как правило из экструзионной головки (вместе с фильтрующими сетками) и калибрующего узла, является коэффициент сопротивления течению расплава K. Перепад давления на фильтрующих сетках служит показателем засорения, т. е. увеличения сопротивления сеток и, следовательно, сигналом к их замене.

Укрупненным показателем работы любого экструдера можно назвать его эффективность, измеряемую как отношение производительности экструдера к его потребляемой мощности [7, 8, 11].


3. Технологические параметры переработки (литья) термопластичных полимеров

Необходимо различать параметры процесса литья, задаваемые в системе управления термопластавтомата, термостата, и фактические параметры процесса, которые реализуются в литьевой машине и пресс-форме.

В первую очередь это связано с тем, что стадии процесса литья, определяемые системой управления литьевой машины, отличаются от стадий (или фаз) процесса, реализуемых для конкретной отливки.

Задаваемые параметры процесса зависят от особенностей системы управления литьевой машины.

Стадия загрузки (пластикации)
Частота вращения шнека / линейная скорость вращения шнека  
Противодавление (давление пластикации)  
Время загрузки / Положение шнека после загрузки Положение шнека после загрузки, доза расплава
Подсос (отвод шнека назад без вращения)  
  "Подушка" (крайнее переднее положение шнека)1
Стадия впрыска (заполнения)
Скорость впрыска / профиль скорости впрыска Фактическая скорость впрыска
Давление впрыска Изменение давления при впрыске
Переключение на выдержку под давлением Фактическое переключение на выдержку под давлением / время впрыска
Стадии выдержки под давлением (подпитки), выдержки на охлаждение
Давление выдержки (давление формования, давление подпитки) / профиль давления выдержки Изменение давления в полости формы при выдержке под давлением
Время выдержки под давлением Фактическое время выдержки под давлением
Время выдержки на охлаждение  
  Время цикла
Общие
Температура материального цилиндра Температура расплава
Температура нагревателей (для горячеканальных форм)  
Температура хладоагента / Температура формы (в точке контроля) Температура формующих поверхностей

1 - хотя "подушка" соответствует моменту окончания выдержки под давлением (подпитки), она регулируется изменением дозы расплава. Поэтому здесь она отнесена к стадии загрузки. [19-25]

3.1 Принципы качественного литья

3.1.1 Влияние конструкции изделия и пресс-формы на процесс уплотнения при литье термопластов

Стадия уплотнения (подпитки) оказывает большое влияние на качество изделия из термопластичного материала [20, 26.27] наряду с другими стадиями литьевого цикла. После окончания заполнения отливки в литьевой полости происходит нарастание давления за счет уменьшения перепадов давления в системе сопло-литник-изделие. В процессе уплотнения уменьшение объема охлаждаемого полимера частично компенсируется за счет подачи в литьевую полость дополнительного количества полимерного расплава под давлением. При недостаточном уплотнении на литьевом изделии появляются утяжки, внутренние усадочные полости, дефекты текстуры. Недостаточное и неравномерное уплотнение может приводить к короблению изделия.

Эффективным методом изучения процесса уплотнения при литье под давлением является конечноэлементный анализ [28-30]. В примерах, которые приводятся в данном докладе, моделирование процесса впрыска, уплотнения и охлаждения отливки проводилось в программном продукте MPI/Flow, а коробления – в программном продукте MPI/Warp компании Moldflow. Процесс литья моделируется в MPI/Flow как двумерное течение сжимаемого расплава в неизотермических условиях (модель Хеле-Шоу), с учетом основных факторов, влияющих на поведение полимера в литьевом канале (теплоперенос в пристенных слоях пресс-формы, диссипативное тепловыделение при течении, тепловые эффекты сжатия-растяжения расплава и др.). В отдельных случаях учитывались входовые эффекты. Расчеты проводились при симметричном равномерном охлаждении литьевой полости. Температуры расплава и формы соответствовали средним значениям рекомендуемого диапазона переработки полимера. Скорость впрыска выбиралась так, что изменения рассчитываемой температуры фронта расплава в изделии не превышали 1-3 °С.

 

3.1.2 Процесс уплотнения для аморфных и кристаллизующихся материалов

Современное количественное прогнозирование процесса уплотнения базируется на использовании экспериментальной PVT-диаграммы, характеризующей сжимаемость полимера под действием давления, а также усадочные процессы в условиях, приближенных к равновесным. PVT-диаграммы аморфных и кристаллизующихся материалов (рис. 2) имеют принципиальные различия.

Рис. 2. PVT-диаграммы АБС-пластика (аморфный) и ПП (кристаллизующийся)

Оценка уплотнения в реальном или моделируемом процессе может производиться по максимальному давлению в пресс-форме, по зависимости давления от времени, а также по весу изделия. При моделировании наиболее эффективна оценка уплотнения по величине объемной усадки материала, рассчитываемой на момент раскрытия пресс-формы. Объемная усадка определяется на основе рассчитываемой временной зависимости температуры и давления в узлах модели на стадиях впрыска, выдержки под давлением и выдержки на охлаждение. Аморфные полимеры отличаются от кристаллизующихся невысоким уровнем объемной усадки. При оценке объемной усадки необходимо учитывать влияние неравновесных условий на усадочные процессы. Скорость охлаждения оказывает большое влияние на степень кристалличности полимера, поэтому объемная усадка кристаллизующихся материалов, рассчитываемая на основе равновесных PVT-диаграмм, оказывается завышенной по сравнению с усадкой в реальном процессе. Например, для ненаполненного ПА 6 объемная усадка, рассчитываемая на основе равновесной PVT-диаграммы, может превышать фактическую объемную усадку на 100% [31].

Проводились экспериментальные работы [31 и др.] по изучению «неравновесных» PVT–диаграмм, полученных при высокой скорости охлаждения, и их применению в конечно-элементном анализе. Однако в современном коммерческом программном обеспечении данная методика не применяется.

Вязкость полимера на стадии уплотнения

Повышение вязкости полимера затрудняет процесс уплотнения. Однако при сравнении материалов по вязкости необходимо учитывать, что течение расплава на стадии подпитки осуществляется при низких скоростях сдвига. Материал может проявлять более высокую вязкость при больших скоростях сдвига, характерных для впрыска, и меньшую вязкость при уплотнении (рис. 3).


Рис. 3. Кривые течения для АБС-пластиков: Сплошная линия – Stylac ABS 100 (Asahi Kasei), пунктир – ABS 728-A (Kumho Chemicals)

Технологические параметры процесса уплотнения

Для управления подпиткой в материальном цилиндре перед шнеком должна оставаться достаточная «подушка» полимера (обычно 3-6 мм после окончания уплотнения).

Необходимо различать параметры процесса, задаваемые в системе управления литьевой машины, и параметры, реализуемые в конкретной пресс-форме. Какое бы большое время выдержки под давлением не было задано, после застывания впускного литника подача расплава полимера в литьевую полость прекращается. Однако процесс течения в незастывших внутренних слоях полимера может продолжаться за счет перераспределения давления внутри гнезда пресс-формы.

В реальном процессе время выдержки под давлением часто оценивают по весу изделия: время, при котором вес изделия перестает меняться, принимается за время выдержки. Аналогичную оценку можно проводить и в компьютерном анализе. На рис. 4 приведена зависимость веса отливки от времени для расчета (табл. 2). При проведении компьютерного анализа оценка времени выдержки под давлением обычно выполняется по рассчитываемому времени охлаждения впускного литника.


Рис. 4. Зависимость веса отливки (в % от максимального) от времени

Если давление выдержки оказывается равным максимальному давлению при впрыске, в начале процесса уплотнения наблюдается скачок давления в изделии. Для устранения этого скачка часто рекомендуется проводить «сброс давления» и задавать в качестве давления выдержки 80% от максимального давления при впрыске. Однако расчеты показывают, что оптимальное давление выдержки, определенное на основе оценки объемной усадки, в общем, не связано с максимальным давлением при впрыске и зависит от особенностей конструкции изделия и литниковой системы и вязкости материала.

Повышение давления выдержки до определенного уровня способствует улучшению уплотнения изделия. Одним из факторов, ограничивающих давление выдержки, является величина распорного усилия, развиваемого в полости формы. Распорное усилие должно быть меньше усилия замыкания термопластавтомата (необходимо предусмотреть запас 20-30%). Типовые конструкции форм обычно рассчитаны на давление в литьевой полости, не превышающее 80-100 МПа. При использовании большего давления выдержки необходимо повысить жесткость конструкции пресс-формы, например, за счет увеличения толщины плит, применения дополнительных опорных колонок и др. Слишком высокое давление выдержки приводит к переуплотнению полимера, что ведет к залипанию изделия в форме, повышению уровня остаточных напряжений, растрескиванию (для хрупких материалов).

Влияние конструкции изделия и места впуска на уплотнение

Чем дальше от места впуска находится область изделия, тем сложнее обеспечить ее уплотнение. В табл. 2 приведены расчеты процесса уплотнения пластины 200 х 30 мм толщиной 2.5 мм с холодноканальной литниковой системой для материалов Stylac ABS 100 (изготовитель Asahi Kasei) и ненаполненного полипропилена HD120M (изготовитель Borealis). Время выдержки под давлением превышало время, необходимое для застывания впускного литника. Время выдержки на охлаждение соответствовало времени полного застывания центрального литника (в реальном процессе изделие можно извлекать из пресс-формы, не дожидаясь застывания центрального литника).

Рис. 5. Модельное изделие «Пластина». Dцентр1 = 4.5 мм, Dцентр2 = 10 мм, Dразв = 8 мм, Dвпуск = 2.5 мм. Цифрами показаны точки измерения объемной усадки

Из-за высоких значений объемной усадки в конце потока заполняемая с торца прямоугольная пластина приобретает форму трапеции, а толщина изделия в области впуска оказывается больше толщины в конце потока.

Для выравнивания объемной усадки по длине изделия используют профиль давления выдержки с линейным сбросом давления в конце процесса уплотнения. Применение в расчете 4 профиля давления (рис. 6) позволило уменьшить разброс объемной усадки с 2.4 до 0.8%. Если система управления термопластавтомата не позволяет задавать линейное изменение давления, используют ступенчатый сброс. Для изделий, имеющих сложную геометрию, часто требуется применение специальных профилей давления выдержки, которые могут быть определены в компьютерном анализе.

Заполнение тонкостенных изделий с толщиной стенки менее 1 мм может быть связано с серьезными проблемами, но если они решены, такие изделия хорошо уплотняются. Наоборот толстостенные изделия с толщиной стенки более 5-6 мм легко заполнить, но сложно уплотнить. Для получения качественных толстостенных изделий часто применяют специальные технологии литья.

Рис. 6. Профиль давления для расчета 4. Пунктиром показано изменение давления в узле впрыска на стадии заполнения

Утолщение в области впуска легко уплотняется, наличие утяжек в такой области обычно свидетельствует об ошибках в конструкции литниковой системы. Любые утолщения в других частях изделия следует рассматривать как области, где возможно недоуплотнение.

В реальных литьевых изделиях наряду с утолщениями часто присутствуют тонкостенные участки. Использование повышенных давлений выдержки в таких изделиях может приводить к переуплотнению тонкостенных областей.

При конструировании изделия необходимо учитывать, что высокие ребра, малое расстояние между ребрами могут значительно затруднять отвод тепла от формующей поверхности. В областях с затрудненным отводом тепла повышается объемная усадка полимера, что приводит к утяжинам и др. дефектам.

Влияние литниковой системы на уплотнение

Конструкция холодноканальной литниковой системы оказывает большое влияние на процесс уплотнения. При этом самыми важными факторами, влияющими на уплотнение изделия, являются толщина впускного литника (определяется диаметром вписанной в его сечение окружности), его длина, а также конструкция области перехода от разводящего литника к впускному. При застывании впускного литника, который является самой тонкой частью литниковой системы, подпитка изделия прекращается. Тонкий и длинный впускной литник – типичная причина появления утяжек. Толщина впускного литника должна определяться таким образом, чтобы избежать появления дефектов, как при заполнении, так и при уплотнении изделия. Все факторы, затрудняющие отвод тепла от впускного литника и увеличивающие время застывания впускного литника, способствуют улучшению уплотнения. К таким факторам можно отнести: изготовление деталей пресс-формы, оформляющих впуск, из материала с пониженной теплопроводностью (легированная сталь), оформление впуска отдельной вставкой, наличие воздушных зазоров между этой вставкой и плитами пресс-формы.

Длинный переход от разводящего литника к впускному способствует быстрому охлаждению расплава перед впуском и затрудняет заполнение и уплотнение. Переход должен быть предельно коротким, но не должен содержать острых углов, способствующих появлению неустойчивого течения расплава на стадии впрыска.

При выборе конструкции туннельного литника необходимо учитывать ее влияние на процесс уплотнения. Рекомендуется отдавать предпочтение конструкциям туннелей без длинного перехода к впускному литнику с длиной впускного литника менее 2 мм.

При использовании материалов с высокой вязкостью (поликарбонат и др.) для обеспечения хорошего уплотнения изделия, толщина впускного литника может достигать толщины изделия. Для получения хорошего внешнего вида изделия в таких случаях могут применяться специальные устройства отделения литника с нагревом.

В некоторых случаях при большой толщине впускного литника и преждевременном снятии давления выдержки может наблюдаться обратное течение полимера из литьевой полости в литниковую систему. Результатом может быть недоуплотнение области вблизи впуска.

Для хорошего уплотнения изделия разводящие и центральный литники должны иметь достаточную толщину (определяется диаметром окружности, вписанной в сечение). Как правило, толщина разводящего литника должна превышать толщину изделия минимум на 1.5 мм [32]. Тонкие разводящие литники применяются для материалов, не требующих хорошего уплотнения. К таким материалам относятся некоторые типы ТЭП.

При конструировании литниковой системы необходимо избегать любых пережимов (сужение литьевого канала) и ступенек, которые способствуют быстрому охлаждению полимера и значительно затрудняют передачу давления в литьевую полость (рис. 7). Форма сечения литникового канала влияет на процесс уплотнения. Наиболее эффективны сечения в форме круга, скругленной трапеции, трапеции. Увеличение длины литниковой системы приводит к ухудшению уплотнения.

В пресс-форме с горячеканальной литниковой системой давление выдержки легко передается в изделие, поэтому хорошее уплотнение изделия можно получить при меньшем давлении выдержки. При этом распределение объемной усадки по изделию становится более равномерным. Поэтому можно утверждать, что горячеканальный литник способствует повышению качества изделия.


Рис. 7. Конструкции литников, затрудняющие процесс уплотнения а) тонкий впускной литник, б) длинный впускной литник (> 1 мм), в) длинный переход от разводящего литника к впускному, г) и е) туннельные литники с длинным переходом к впускному литнику, д) туннельный литник с длинным впускным литником (>2 мм), ж) – з) – пережимы, и) ступеньки

Если литниковая система содержит горячеканальные и холодноканальные литники, процесс уплотнения определяется конструкцией холодноканальной части.

Влияние системы охлаждения пресс-формы на уплотнение

При конструировании пресс-формы необходимо учитывать влияние системы охлаждения на процесс уплотнения. В холодноканальной пресс-форме недопустимо расположение охлаждающего канала вблизи впуска (подобные рекомендации встречаются в литературе), «пересечение» литника охлаждающим каналом. В настоящее время существуют два подхода к конструированию системы охлаждения: первый предполагает обеспечение равномерного охлаждения изделия, во втором равномерность уплотнения изделия достигается за счет его неравномерного охлаждения.

Влияние неравномерного уплотнения на коробление

Неравномерное распределение объемной усадки по изделию – одна из основных причин коробления. Коробление изделий из аморфных материалов (ПС, УПС, АБС, САН, ПММА, ПК, ПФО и т.д.), имеющих малую усадку, существенно меньше коробления из ненаполненных кристаллизующихся материалов (ПЭ, ПП, ПА 6, ПА 66, ПА 610, ПБТ и т.д.). При повышении жесткости изделия за счет увеличения основной толщины, введения ребер, использования материала с большим модулем упругости, коробление уменьшается.

Рис. 8. Объемная усадка и коробление для изделия «Светофильтр» (расчет в MPI/Flow, MPI/Warp): а) изделие с утолщением по периметру, горячеканальная литниковая система, б) изделие без утолщения, горячеканальная литниковая система, в) изделие с утолщением по периметру, горяче-холодноканальная литниковая система. Цифрами показаны значения объемной усадки и максимального коробления. Величины деформаций модели при изображении коробления увеличены в 8 раз.


Рассмотрим влияние неравномерного уплотнения на коробление на примере изделия «Светофильтр автомобильной фары», получаемого двухцветным литьем из поликарбоната. В компьютерном анализе моделировался процесс литья только одной части изделия с использованием материала одного цвета. Изделие имело основную толщину 2.5 мм и утолщение по периметру до 4-5 мм. Расчет показал: если впуск полимера производится в центральную часть изделия (рис. 8а), то при давлении выдержки 40 МПа высокая объемная усадка в области утолщения приводит к большому короблению (4.0 мм). Применение более высокого давления выдержки в данном случае невозможно, т.к. при повышении давления в центральной части изделия возникает переуплотнение.

На рис. 8б представлены результаты расчета для изделия без утолщения. В этом случае уплотнение изделия улучшается, величина коробления уменьшается до 2.8 мм.

Для конструкции с утолщением наименьшее коробление (1.7 мм) получается при впуске в утолщение (рис. 8в). Такой впуск обеспечивается литниковой системой, содержащей горячеканальную и холодноканальную части. Реализация данного технического решения (изготовление пресс-форма и литье выполнялось в ОАО «Автосвет, г. Киржач) позволило получить изделие высокого качество.

Технологии литья, улучшающие уплотнение

Уплотнение литьевых изделий может быть улучшено при использовании специальных технологий литья. К таким технологиям относятся литье с подпрессовкой (компрессионное формование или литье с изменяющейся геометрией литьевой полости), литье с газом, литье с водой, горячеканальное литье с независимым управлением профилем давления выдержки (технология «Dynamic feed» фирмы Synventive Molding Solutions) и др. Для изделий простой формы (прямоугольный параллелепипед, пластина, диск и др.) качественное изделие может быть получено и при недоуплотнении материала, если обеспечивается только одно направление усадки. Данная технология может быть реализована за счет неравномерного «одномерного» охлаждения полости формы [31 – 33].

3.2 Разновидности процесса литья

 

3.2.1 Литье тонкостенных изделий

Одним из наиболее эффективных методов снижения себестоимости изделия является уменьшение толщины стенки изделия, позволяющее уменьшить расход материала и цикл литья. Однако толщина стенки менее 1 мм и время цикла литья 5-10 сек накладывают особые требования к материалу, оборудованию и пресс-форме. Поэтому говорят о технологии тонкостенного литья [34 – 38].

Можно выделить 3 типа изделий, для литья которых применяется технология тонкостенного литья. К первому типу относятся изделия из термически стабильных материалов, таких как полиэтилен, полипропилен, полистирол и др., толщиной менее 1 мм. Указанные материалы используются для изготовления упаковки, одноразовой посуды. Низкий уровень механических свойств данных материалов обычно не позволяет снизить толщину менее 0.5-0.6 мм.

Ко второму типу можно отнести технически сложные изделия толщиной менее 1 мм, отливаемые из конструкционных термопластов (АБС-пластик, полиамиды, поликарбонат, полибутилентерефталат, полиацетали и др.) и суперконструкционных материалов (полифениленсульфид, полиэфирсульфон, полиэфирэфиркетон, жидкокристаллические полимеры, полиэфиримид и др.). Данные материалы отличаются высоким уровнем механических свойств и невысокой термической стабильностью при переработке. Из этих материалов могут отливаться сверхтонкие изделия, например: электрический разъем из стеклонаполненного жидкокристаллического полимера длиной 250 мм с толщиной стенки 0.4 мм [39], миниатюрные разъемы из жидкокристаллического полимера толщиной 0.2-0.3 мм [40], корпуса электрических катушек из PA 66 и ПБТ толщиной 0.15 - 0.27 мм [41]. Существуют примеры литья и более тонких изделий, например толщиной 0.08 мм.

Тонкостенные изделия третьего типа – крупногабаритные изделия толщиной более 1 мм с отношением длина потока/толщина более 100. Литье таких изделий имеет свои особенности и здесь не рассматриваются.

Требования к литьевой машине, пресс-форме и материалу для тонкостенного литья

Рассмотрим особенности литья тонкостенных изделий 1-го и 2-го типа. Требования к литьевой машине, пресс-форме и материалу изделия при тонкостенном литье таких изделий обобщены в таблице [25-27]:

Литьевая машина

Высокое давление

Высокая скорость впрыска

Высокое усилие замыкания

Быстроходность

Высокий уровень системы управления

Высокий уровень гидравлической системы

Пресс-форма

Горячеканальная система

Интенсивное и равномерное охлаждение

Повышенные требования к центрированию

Повышенная точность изготовления литниковой системы

Увеличенное усилие выталкивания

Увеличенные литьевые уклоны

Хорошая вентиляция

Надежность работы всех систем пресс-формы

Повышенная прочность и износостойкость материалов пресс-формы

Материал изделия

Высокая текучесть

Стабильность

Способность к "быстрому литью"

Высокие механические свойства

При литье тонкостенных изделий из термически нестабильных материалов одним из наиболее критических параметров литьевой машины является скорость впрыска. При тонкостенном литье необходима очень высокая скорость впрыска т.к. материал очень быстро застывает. Литьевая машина для тонкостенного литья должна иметь гидроаккумулятор. Гидроаккумулятор увеличивает подачу масла в гидроцилиндр узла впрыска, что позволяет повысить скорость впрыска в 3 раза по сравнению с обычной машиной [2].

Если тонкостенное изделие отливается из термически стабильного материала, обычно можно взять машину с большим объемом - это обеспечивает повышение скорости впрыска. Для термически нестабильных материалов объем впрыска должен соответствовать объему отливки и время пребывания материала при высокой температуре должно быть минимальным.

Машина для тонкостенного литья должна обеспечивать высокое давление впрыска (1800-2500 кгс/см2 и более) и соответствующее высокое усилие замыкания. Например, для литья корпуса источника питания толщиной менее 0,5 мм из поликарбоната потребовалась машина с давлением литья, превышающим 2760 кгс/см2 [28].

Важнейшее условие получения качественных тонкостенных изделий – высокий уровень системы управления машины (управление с обратной связью по основным параметрам процесса, контроль процесса), надежность и стабильность работы машины. Изменение времени впрыска на 0,1 с может привести к недоливу [35].

Применение холодноканальных литников при тонкостенном литье неэффективно из-за большого времени охлаждения литников и значительных потерь давления расплава в литниковой системе. По этой причине для литья тонкостенных изделий используют горячеканальные литниковые системы или реже – для термически стабильных материалов – системы с незастывающими литниками, которые имеют меньшую стоимость, но менее надежны в работе.

При тонкостенном литье должна быть обеспечена высокая надежность работы всех систем пресс-формы. Особое внимание должно быть уделено центрированию формообразующих элементов. Смещение пуансона относительно матрицы на 0.01 мм может привести к резкому изменению характера течения полимера при впрыске. Высокая скорость впрыска требует хорошей вентиляции оформляющей полости.

В многогнездных формах важным фактором является точность изготовления литниковой системы. Небольшие различия в размерах литниковых каналов (особенно впускных литников) могут вызвать резкие изменения характера заполнения гнезд отливки.

При тонкостенном литье часто необходимо более высокое усилие выталкивания и увеличенные по сравнению с обычным литьем литьевые уклоны [3] – следствие более высокого давления литья.

Высокие давление и скорость впрыска накладывают особые требования к материалам пресс-формы. При литье тонкостенных изделий рекомендуется применять более износостойкие и прочные стали, типа стали H13 (отечественный аналог 4Х5МФ1С) [35].

Высокие требования к пресс-формам для тонкостенного литья приводят к ее удорожанию на 30-40% по сравнению с обычным литьем [29]. Более высокая стоимость пресс-формы окупается за счет меньшего веса изделия и большей производительности процесса.

Высокая текучесть - одно из обязательных свойств материала для тонкостенного литья [3]. Выпускаемый в настоящее время марочный ассортимент зарубежных термопластов включает достаточное количество материалов с низкой вязкостью различного применения. Необходимо учитывать, однако, что повышение текучести материала сопровождается уменьшением основных механических характеристик.

При толщинах стенки меньше 1 мм "окно переработки" становится очень узким. Это накладывает жесткие требования к стабильности характеристик материала.

Уменьшение времени цикла литья ограничено теплофизическими характеристиками материала (для кристаллизующихся материалов - скоростью кристаллизации). Некоторые марки материалов разработаны специально для тонкостенного литья. Они характеризуются как материалы с "быстрым циклом".

Тонкостенное литье требует более точного учета технологических и эксплуатационных особенностей материала при конструировании изделия. Оптимальное решение может быть найдено в компьютерном анализе.

Оптимизация толщины стенки изделия, литниковой системы и технологического режима

В таблице приведены результаты анализа впрыска для кофейной чашки из полипропилена марки Каплен 01250 в программном продукте MPI/Flow фирмы Moldflow при различной толщине стенки. Анализ проводился при температуре расплава 220 °С и температуре формы 40 °С.

Толщина (мм) Вес изделия (г) Оптимальное время впрыска (с) Общая толщина 2-х застывших слоев при окончании впрыска (мм) Время охлаждения (с) Потери давления: изделие + литник (кгс/см2) Распорное усилие при впрыске (тс)
0,4 5,7 0,18 0,21 0,3 990 40
0,5 7,1 0,24 0,22 0,5 780 30
0,6 8,5 0,30 0,20 0,8 680 25
0,7 10,0 0,35 0,26 1,1 600 22
0,8 11,4 0,43 0,30 1,4 530 19
0,9 12,8 0,53 0,34 1,7 460 16
1,0 14,2 0,64 0,38 2,1 410 14

Уменьшение толщины стенки изделия приводит к быстрому росту потерь давления расплава на стадии впрыска. Если эти потери давления превышают допустимое давление для используемой литьевой машины, может появиться недолив.

При тонкостенном литье большую роль играет застывший пристенный слой, толщина которого сопоставима с толщиной полости. Величина застывшего слоя очень сильно зависит от скорости впрыска, поэтому при тонкостенном литье правильный выбор скорости впрыска имеет особое значение.

Одним из наиболее критических мест горячеканальной литниковой системы является впускной литник. Слишком тонкий впускной литник является причиной недолива, дефектов изделия вблизи впуска. При большой толщине впускного литника ухудшается внешний вид изделия. Оптимальная толщина впускного литника зависит от текучести материала, толщины изделия и длины потоков расплава. Оптимальная толщина впускного литника может быть определена в компьютерном анализе.

Оптимизация системы охлаждения пресс-формы

Особое значение при тонкостенном литье имеет конструкция системы охлаждения пресс-формы. Оптимизация системы охлаждения проводится в компьютерном анализе.

Для обеспечения стабильности процесса охлаждение пресс-формы для литья тонкостенных изделий должно осуществляться с помощью специального термостата.

При малых временах цикла в пресс-форму от расплава поступает очень большое количество тепла. Поэтому при тонкостенном литье отвод тепла от изделия должен быть более интенсивным.

Еще одним требованием является равномерность охлаждения изделия. Неравномерное охлаждение приводит к резкому изменению характера течения расплава и является причиной многих дефектов (коробление, воздушные ловушки, нестабильность размеров при хранении и эксплуатации изделия и т.д.). Часто условия охлаждения матрицы и пуансона очень сильно различаются. В этом случае требуется два независимых контура охлаждения (используется термостат с двумя баками или два термостата).

Особые проблемы при тонкостенном литье могут вызвать так называемые "горячие пятна" - участки формообразующей поверхности с повышенной температурой. "Горячие пятна" возникают из-за затрудненного отвода тепла от некоторых областей изделия. Причиной этого может быть большое расстояние до канала охлаждения (превышающее 3 диаметра канала), а также конструктивные особенности изделия (наличие ребер и пр.).

3.2.2 Литье при низком давлении

Одной из разновидностей литья под давлением термопластичных материалов является т.н. литье при низком давлении [30]. Литье при низком давлении применяется для изготовления крупногабаритных изделий (столешницы, двери, различные панели, подставки и пр.), а также изделий с декоративной поверхностью, получаемых методом литья на подложку (ткань, кожу, пленку). В зарубежной литературе для последнего процесса обычно используют термины "In-mold decoration" (IMD) или "In-mold lamination". Методом литья на подложку изготавливают мебель (сиделья стульев и кресел), чемоданы и дипломаты, крупногабаритные детали салона автомобилей и т.д.

Особенностью литья на подложку является невозможность применения высоких скоростей впрыска, характерных для обычного литья под давлением, т.к. при высокой скорости впрыска происходит смещение и смятие подложки. При малых скоростях впрыска резко уменьшаются потери давления: давление впрыска в этом процессе обычно не превышает 10 МПа.

Хотя время впрыска в данном процессе удлиняется в 3-4 раза по сравнению с обычным литьем, общее время цикла остается на том же уровне из-за того, что практически отсутствует стадия выдержки под давлением и уменьшается время выдержки на охлаждение. Изделие можно извлекать из пресс-формы при более высокой температуре. Изделия, полученные литьем при низком давлении, отличаются низким уровнем остаточных напряжений и малым короблением [44, 45].

Малая скорость впрыска и низкое давление выдвигают особые требования к материалу и конструкции изделия, пресс-форме и литьевому оборудованию.

Требования к материалу изделия

Для литья на подложку обычно используют материалы с невысокой температурой переработки, такие как полипропилен, АБС-пластики и смеси на их основе [45].

Процесс требует применения материалов с высокой текучестью. Хотя подложка является хорошим изолятором и изделие охлаждается только с одной стороны, при низкой скорости впрыска диссипативное тепловыделение крайне мало - расплав быстро охлаждается.

Выбор материала и определение толщины изделия, необходимой для 100% заполнения, может быть выполнен с высокой точностью в программном продукте Flow. Для учета влияния подложки на процесс литья необходимо также использовать анализ охлаждения пресс-формы Cool (в этом программном продукте предусмотрен специальный анализ литья на подложку).

Требования к пресс-форме

Использование низких давлений и малых скоростей резко уменьшает требования к механической прочности деталей пресс-формы, что позволяет существенно уменьшить толщину плит и вес пресс-формы по сравнению с обычным литьем. Пресс-форма может изготавливаться из недорогих, легко обрабатываемых материалов.

В то же время в данном процессе используется горячеканальная литниковая система. Одной из особенностей литья при низком давлении является малая прочность и низкое качество линий спая. В области спаев наблюдаются дефекты на декоративной подложке. Поэтому для предотвращения появления линий спая в литье при низком давлении применяется особая технология "последовательных впусков". В этой технологии используются запирающиеся горячеканальные сопла. Начальное состояние всех сопел, кроме одного - закрытое. Сопло открывается только в тот момент, когда до него доходит фронт расплава. Оптимальное положение впусков, а также моменты открытия/закрытия могут быть определены на этапе конструирования изделия/пресс-формы в программном продукте Flow.

Литьевые машины для литья при низком давлении

Отсутствие высоких давлений и скоростей значительно упрощает все узлы литьевой машины. В 3-4 раза снижается усилие замыкания. Уменьшается толщина и габариты крепежных плит. Например [45], машина для литья при низком давлении с усилием замыкания 350 т имеет плиты с размерами 1120 х 1120 мм, тогда как размер плит машины с таким же усилием замыкания для обычного литья составляет всего 735 х 735 мм.

Специальные литьевые машины для литья при низком давлении выпускают фирмы Hettinga Equipment, Engel, Krauss-Maffei и др.

3.2.3 Технологии литья термопластов с газом

Литье пластмасс с использованием газа получило широкое распространение с начала 1990-х годов. Первые работы в этом направлении были видимо выполнены в середине 60-х годов в России Е.Е. Глуховым.

В настоящее время основными патентами в области литья с газом обладают фирмы Melea (Гибралтар)/GAIN Technology(США) и Cinpres Gas Injection (Великобритания) [49].

В обычном литье под давлением уплотнение полимера в формующей полости происходит за счет давления, создаваемого в гидроцилиндре узла впрыска литьевой машины (стадия выдержки под давлением). Давление передается в дальние области отливки через остывающий полимер, при этом на утолщениях, напротив ребер или бобышек появляются утяжки, на участках с повышенной толщиной могут образовываться внутренние усадочные полости. Недоуплотнение приводит к появлению дефектов текстуры. Неравномерное уплотнение является причиной неравномерности усадочных процессов, приводит к короблению, вызывает высокие остаточные напряжения. При литье с газом уплотнение полимера происходит за счет давления газа (50-200 атм.) непосредственно на область изделия или вблизи этой области, поэтому процесс уплотнения проходит легче (и при небольшом давлении газа), чем в обычном литье под давлением. Литье с газом позволяет получить изделия с хорошим качеством поверхности, без утяжек и коробления, с минимальным уровнем остаточных напряжений, т.е. с высокой стабильностью размеров [49 – 51].

При литье с газом применяются обычные литьевые машины, и это является одной из причин популярности таких технологий. Одно из преимуществ литья газом - возможность использования литьевых машин с существенно меньшим усилием замыкания, что дает большой экономический эффект при литье крупногабаритных изделий.

В настоящее время существует множество вариантов технологий литья с газом. Все их можно разделить на 2 типа. К первому типу относятся технологии, в которых газ подается в расплав полимера, образуя внутренние полости (в зарубежной литературе для таких технологий чаще всего используют английский термин "gas-assisted injection molding" (GAIM или GAM) и немецкий "gas innendruck technik" (GIT или GID). В технологии второго типа газ подается в полость формы и создает внешнее давление на изделие. За рубежом для этой технологии используют термин "external gas molding". Оба типа технологий могут быть реализованы на одном и том же оборудовании.

В качестве газа применяется азот, который имеет низкую цену, инертен и доступен. Источником газа являются баллоны с азотом (при небольших объемах производства) или специальные генераторы азота.

В зависимости от типа используемого оборудования процесс литья с газом может проводится в двух вариантах [49, 50]: с управлением давлением газа и с управлением объемом подаваемого газа. В первом наиболее распространенном варианте компрессор высокого давления обеспечивает требуемый профиль давления газа. Во втором варианте заданный объем сжатого газа подается в пресс-форму с помощью поршневого дозирующего компрессора импульсного действия.

Принципиально важным моментом в литье с газом является способ осуществления уплотнения (подпитки) материала. В ряде технологий (при подаче газа через литниковую систему и др.) уплотнение изделия выполняется только за счет давления газа. В крупногабаритных изделиях это может приводить к недоуплотнению части изделия, следствием чего является появление утяжек, внутренних усадочных полостей, а также снижение качества спаев. Подобные явления не проявляются, если основной процесс уплотнения производится за счет обычной подпитки полимером из материального цилиндра литьевой машины, а давление газа обеспечивает дополнительное уплотнение в проблемных областях.

Технологии литья с подачей газа в расплав полимера

Существует несколько разновидностей этих технологий, которые могут быть классифицированы по особенностям проведения технологического процесса, по месту подачи газа, по типам получаемых изделий.

Учитывая особенности технологического процесса, выделяют следующие разновидности технологии литья с подачей газа в расплав полимера [49, 52]:

1. Литье с неполным впрыском полимера

2. Литье с полным впрыском с применением прибыли

3. Литье с полным впрыском с вытеснением расплава полимера в материальный цилиндр литьевой машины

4. Литье с локальной подачей газа в область изделия для устранения утяжек

5. Литье со смещением знаков

Для получения одного и того же изделия часто могут применяться различные варианты процесса.

Впуск газа может осуществляться непосредственно в полость формы, в холодноканальную литниковую систему (в разводящий или центральный литник), а также в сопло литьевой машины. При подаче газа в центральный литник или в сопло машины, последнее должно быть оснащено запорным клапаном, для предотвращения попадания газа в материальный цилиндр [51]. При подаче газа в разводящий литник запорный клапан не требуется - остывание полимера в центральном литнике обычно препятствует продвижению воздушного пузыря к материальному цилиндру. Для надежности также применяют пережимы – локальное утоньшение на разводящем литнике. Газ подается с помощью специального устройства – инжектора (газовой иглы) – через тонкий кольцевой зазор, который пропускает газ, но является преградой для расплава полимера.

Технологии литья с подачей газа в расплав полимера эффективны для получения изделий следующих типов:

а) Визуально-толстостенные изделия (разнообразные ручки и т.д.)

б) Крупногабаритные изделия (автомобильные бамперы, панели приборов, корпуса телевизоров, мониторов и т.д.)

в) Детали с высокими требованиями к качеству наружной поверхности, содержащие утолщения, ребра, бобышки.

В последнее время стали применять литье с газом и для получения тонкостенных изделий (корпусные детали мобильных телефонов и т.д.). Ввиду того, что литье подобных изделий связано с рядом особенностей, для него часто используют особый термин "тонкостенное литье с газом".

Поведение полимера и газа в полости формы определяется многими факторами и очень сильно зависит от особенностей используемой марки полимера. Компьютерный анализ позволяет спрогнозировать это поведение и оптимизировать конструкцию изделия и пресс-формы на этапе подготовки производства [53 – 55].

Один из недостатков технологий с подачей газа в расплав полимера - неравномерная толщина стенки полимера. Наибольшая неравномерность толщины наблюдается на "поворотах": слой полимера минимален с внутренней стороны газового канала. Вблизи газовой иглы обычно наблюдаются резкое изменение толщины слоя полимера, а на поверхности изделия - дефекты текстуры.

Литье с неполным впрыском полимера

При литье с неполным впрыском (рис. 9) в пресс-форму подается расплав полимера, но после заполнения изделия на 50-60% для визуально-толстостенных и 90-95% для крупногабаритных деталей [56] впрыск полимера прекращается, и в полость формы подается газ. В крупногабаритных изделиях газ подается в так называемые газовые каналы - утолщения, предусмотренные в конструкции изделия. Газ вытесняет расплав полимера из горячих внутренних областей полости в незаполненные участки, обеспечивает полное оформление изделия.

Рис. 9. Схема процесса литья с газом при неполном впрыске полимера: слева - газ подается через литниковую систему, справа - газ подается прямо в изделие [57]

К моменту подачи газа на поверхности отливки формируется корка из застывшего полимера, которая препятствует выходу газа наружу. Толщина корки определяется несколькими факторами, важнейшим из которых является "время задержки" – промежуток времени между моментом остановки впрыска полимера и началом подачи газа.

Одной из проблем в данном процессе является след на изделии на линии остановки полимера [51, 52], который иногда можно устранить изменением технологического режима.

Литье с полным впрыском с применением прибыли

Проблема следа на изделии может быть решена при 100% заполнении формующей полости расплавом перед подачей газа. Расплав полимера из внутренних областей изделия вытесняется газом в прибыль. Между изделием и прибытью устанавливают запорный клапан, который находится в закрытом состоянии во время заполнения изделия расплавом [52]. Различают варианты процесса. В первом варианте прибыль открывается перед подачей газа. Во втором варианте, запатентованном фирмой Cinpres Gas Injection, газ подается перед открытием прибыли, что позволяет дополнительно уплотнить материал.

Литье с полным впрыском с вытеснением расплава полимера в материальный цилиндр литьевой машины

Интересным вариантом технологии литья с газом является процесс со 100% заполнением изделия расплавом, при котором подача газа производится в противоположную от впуска полимера часть изделия [49, 52]. Газ вытесняет расплав полимера из внутренних областей изделия в материальный цилиндр литьевой машины (при этом газ не должен попасть в цилиндр литьевой машины).

Литье с локальной подачей газа в область изделия для устранения утяжек

Задача устранения утяжек может быть решена при локальной подаче газа в определенную область изделия [52]. При этом основная часть изделия уплотняется, как и в обычном процессе литья под давлением за счет давления полимера (стадия выдержки под давлением). Газ создает дополнительное давление в проблемных областях с повышенной объемной усадкой и обеспечивает хорошее качество поверхности изделия.

Литье со смещением знаков

Процесс литья с газом со смещением знака [52] проводится следующим образом. После впрыска полимера открывается дополнительная полость за счет смещения подвижного знака пресс-формы. Эта полость заполняется полимерным материалом, который "раздувается" под действием давления газа.

Особенности литья с газом крупногабаритных изделий. Принципы конструирования газовых каналов

Газовые каналы выполняют при литье с газом крупногабаритных изделий 3 функции: а) на стадии впрыска полимера газовые каналы работают как холодноканальные литники, транспортируя расплав полимера к дальним областям изделия; б) после впуска газа последний вытесняет расплав полимера из внутренних областей газовых каналов (стадия вытеснения), обеспечивая 100% заполнение изделия полимером в процессе с неполным впрыском; с) далее под действием давления газа происходит уплотнение полимера в изделии (стадия уплотнения). Конструкция газовых каналов должна учитывать особенности поведения полимера и газа на этих трех стадиях процесса.

Форма и размеры поперечного сечения, расположение газовых каналов, места впуска полимера и газа выбираются с учетом следующих факторов:

1) Необходимо обеспечить возможность заполнения 80-95% изделия расплавом до подачи газа в процессе с неполным впрыском или 100% в процессе с полным впрыском, а также уплотнение полимера. Газ может двигаться в канале, только вытесняя из него полимер или уплотняя полимер. В процессе с неполным впрыском при малом объеме газовых каналов возникает недолив. Если объем газовых каналов слишком большой, газ не может дойти до конца газовых каналов. Это приводит к утяжкам (в каналах, заполненных полимером), короблению и значительно увеличивает время цикла.

2) Необходима сбалансированность заполнения изделия расплавом [50, 51]. Нарушение данного принципа может привести к недоливу, короблению изделия. Согласно работе [50] газовые каналы должны заканчиваться рядом с теми областями изделия, которые заполняются на стадии впрыска полимера в последнюю очередь.

3) Необходима также балансировка для газа [50,51]. Неравномерность движения газа может быть вызвана неравномерностью охлаждения полимера или другими причинами.

4) При течении полимера могут образовываться воздушные ловушки и линии спая. На стадии впрыска расплав полимера движется по газовым каналам быстрее, чем по более тонким областям изделия. При большой толщине газовых каналов происходит образование воздушных ловушек и линий спая между двумя газовыми каналами. Для предотвращения этого явления рекомендуется выбирать для начала толщину газовых каналов в 2-2.5 раз больше толщины изделия [50, 51]. Это оценочная величина и часто такая толщина газовых каналов будет недостаточна. Поведение расплава в реальной пресс-форме зависит от вязкости материала, толщины изделия и др. факторов. Согласно [58] толщина газовых каналов может превышать основную толщину изделия в 4 раза. Чем меньше толщина газовых каналов, тем большее давление газа должно быть использовано.

5) Впуск полимера может производиться в газовый канал или в основную стенку изделия. В первом случае облегчается заполнение крупногабаритных изделий. Во втором варианте уменьшается длина затекания, но одновременно снижается эффект ускорения течения расплава по газовым каналам [51].

6) Так как в изделии с газовыми каналами имеется большой перепад толщин, часто может проявляться эффект замедления, который повышает неравномерность заполнения и приводит к недоливу.

7) Искривление газового канала приводит к неравномерному уменьшению толщины слоя полимера и ослабляет изделие (газ движется в искривленном газовом канале по кратчайшему пути) [49 – 51]. Этот эффект можно предотвратить, увеличивая охлаждение канала с соответствующей стороны (за счет правильного выбора формы поперечного сечения канала, расположения охлаждающих каналов).

8) Попадание газа в тонкостенные части изделия [49 – 51] значительно снижает механическую прочность изделия и ухудшает его внешний вид (для прозрачных изделий). Данный эффект часто наблюдается при расположении газовых каналов перпендикулярно направлению растекания расплава. Эффект можно устранить при задержке подачи газа, повышении эффективности охлаждения изделия, снижения давления газа, уменьшении основной толщины изделия. Использование специальной канавки, расположенной вдоль газового канала также является возможным решением для устранения данного эффекта.

9) Замкнутые газовые каналы могут создавать несколько проблем [49 – 51]. Во-первых, они приводят к образованию воздушных ловушек. Во-вторых, в месте встречи 2-х воздушных пузырей всегда остается слой полимера. Для полного охлаждения этого слоя необходимо значительно увеличить время цикла. Часто давления газа недостаточно для уплотнения толстого слоя полимера, поэтому здесь возможна утяжка.

10) Механическая прочность и жесткость изделия. Газовые каналы, если у них достаточная толщина стенки, повышают механические характеристики изделия. Однако авторы работ [49, 50] не рекомендуют пытаться использовать газовые каналы для улучшения механических характеристик изделия. Проще всего это сделать за счет системы обычных ребер.

11) При литье с газом нередко используются несколько впусков газа в изделие. Количество впусков газа должно быть минимальным. Каждый впуск - это отверстие в изделии (хотя в настоящее время существует технология, позволяющая "заделать" дырку впрыском дополнительной порции расплава, эта технология требует особой литьевой машины). В разных впусках сопротивление газу может различаться - газ может проигнорировать впуск с большим сопротивлением.

12) При разводке газовых каналов необходимо учитывать, что уплотнение полимера и компенсация объемной усадки происходит в данной технологии за счет давления газа. При увеличении расстояния от области изделия до газового канала эффективность уплотнения этой области уменьшается. Чем меньше текучесть материала, тем ближе должны быть газовые каналы к уплотняемой области изделия.

13. В ряде случаев на лицевой стороне изделия вдоль газовых каналов может появляться след. По мнению авторов работы [49] на этот дефект большое влияние оказывает материал изделия. Использование специальных марок с уменьшенной скоростью кристаллизации/отверждения позволяет устранить этот дефект.

14) Добавление или изменение газового канала может кардинально изменить характер заполнения изделия [50, 51], это надо учитывать при доработках формы.

Литье с внешним давлением газа

В технологии литья с внешним давлением газа процесс проводится как в обычном литье под давлением с той лишь разницей, что после впрыска полимера в полость формы подается газ. Газ подается между обратной (нелицевой) стороной изделия и стенкой формы. Процесс позволяет получить высокое качество лицевой поверхности изделия, при этом поверхность обратной стороны изделия, на которую непосредственно действует давление газа, оказывается неровной. Полость формы в этом процессе должна быть надежно уплотнена для предотвращения утечек газа.

Известный у нас процесс литья с газовым противодавлением [59] можно рассматривать как разновидность процесса литья с внешним давлением газа.


Литература

1.  Быстров Г. А., Гальперин В. М., Титов Б. П. Обезвреживание и утилизация отходов в производстве пластмасс. Л.: Химия, 1982. С. 178 – 214.

2.  Стрепихеев А.А., Деревицкая В.А. Основы химии высокомолекулярных соединений. - М.: Химия, 1976. 440 с.

3.  Тагер А.А. Физикохимия полимеров. - М.: Химия, 1978. 544 с.

4.  Шур А.М. Высокомолекулярные соединения. - М.: Высшая школа, 1981. 656 с.

5.  Энциклопедия полимеров. Т. 1-3. - М.: Советская энциклопедия. Т. 1: 1972. 1224 с. Т. 2: 1974. 1032 с. Т. 3, 1977. 1152 с.

6.  Калинчев Э.Л., Саковцева М.Б. Выбор пластмасс для изготовления и эксплуатации изделий: Справочное пособие. - Л.: Химия, 1987. 416 с.

7.  Николаев А.Ф. Технология пластических масс. - Л.: Химия, 1977. 368 с.

8.  Калинчев Э.Л., Саковцева М.Б. Свойства и переработка термопластов: Справочное пособие. - Л.: Химия, 1983. 288 с.

9.  Каменев Е.И., Мясников Г.Ф., Платонов М.П. Применение пластических масс. - Л.: Химия, 1985. 448 с.

10.  Технические свойства полимерных материалов: Учебн.-справ. пособие / Крыжановский В.К., Бурлов В.В., Паниматченко А.Д., Крыжановская Ю.В. 2-е изд. – СПб: Профессия, 2005. 280 с.

11.  Технология пластических масс / Под ред. В.В. Коршака. - М.: Химия, 1985. 560 с.

12.  Тугов И.И., Кострыкина Г.И. Химия и физика полимеров. - М.: Химия, 1989. 432 с.

13.  Injection molding handbook / Ed. by D.V. Rosato, D.V. Rosato, M.G. Rosato. Springer - Verlag, 2000.1457 p.

14.  Modern plastics handbook/Ed. by Harper Ch.A. McGraw-Hill, 2000. 1231p.

15.  Бернхардт Э. "Переработка термопластичных материалов", пер. с анг.,М.,1962

16.  Завгородний ВК., Калинчев ЭЛ., Махаринский Е. Г.,"Оборудование предприятий по переработке пластмасс" Л.,1972

17.  Оборудование для переработки пластмасс. М., 1976

18.  Торнер Р. В. Теоретические основы переработки полимеров. М., 1977.

19.  Глухов Е.Е., Попов Е.Н. Инжекционные характеристики литьевых машин и расчет форм. Пласт. массы, 1980, № 3, с. 43-44.

20.  Калинчев Э.Л., Калинчева Е.И., Саковцева М.Б. Оборудование для литья пластмасс под давлением: Расчет и конструирование. М., Машиностроение, 1985, 256 с.

21.  Калинчев Э.Л., Кацевман М.Л. Автоматизация технологического процесса изготовления изделий на литьевых машинах. М., НИИмаш, 1979, 72

22.  Калинчев Э.Л., Кригевер А.И. Автоматизированные литьевые машины и системы управления ими. Обзор. М., НИИМаш, 1980.

23.  Попов Е.И., Глухов Е.Е., Сагалаев Г.В. Основная технологическая характеристика литьевой машины. Пласт. массы, 1980, № 1, с. 30-31.

24.  Руководство по литью под давлением конструкционных полимерных материалов производства НПП "Полипластик". "Полипластик", М., 2000.

25.  Техника переработки пластмасс. Под ред. Н.И. Басова и В. Броя. М., Химия, 1985, 528 с.

26.  Лапшин В.В. Основы переработки термопластов литьем под давлением. М., Химия, 1974, 270 с.

27.  Глухов Е.Е., Коекин Е.И. «Схема расчета литьевых форм для термопластов». Пласт. массы, 1985, № 4, с. 39-40.

28.  Катышков Ю.В., Беликов В.В., Варенков В.В. «Классификация режимов при моделировании стадии уплотнения процесса литья». Пласт. массы, 1992, № 4, с. 32-33.

29.  Катышков Ю.В., Беликов В.В., Варенков В.В. «Математическая модель и алгоритм расчета при моделировании стадии уплотнения процесса литья». Пласт. массы, 1992, № 4, с. 33-35.

30.  Катышков Ю.В., Беликов В.В., Варенков В.В. «Моделирование стадии уплотнения процесса литья. Многоступенчатое уплотнение». Пласт. массы, 1993, № 5, с. 34-36.


© 2011 Банк рефератов, дипломных и курсовых работ.