Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине |
Реферат: Конечные разности. ПогрешностиРеферат: Конечные разности. ПогрешностиРеферат «Конечные разности. Погрешности» 1. Погрешности 1.1 Действительные и конечно-разрядные числа Представление действительных чисел в вычислительных машинах с фиксированной разрядной сеткой влечет появление инструментальной погрешности в обрабатываемых числах и результатах арифметических действий. Принятое при вводе преобразование исходных действительных чисел в нормализованную экспоненциальную форму и размещение их в ограниченной разрядной сетке ЭВМ с порядком и дробной частью (мантиссой) в общем случае вносит в этот операнд относительную инструментальную погрешность, величина которой не превышает где n – число значащих дробных двоичных разрядов, отведенных для хранения мантиссы. Приближенное конечно-разрядное число a – это действительное число, занимающее заданное количество разрядов и округленное до числа с ближайшим значением достоверного младшего разряда. Приближенные действительные числа имеют абсолютную и относительную погрешности. Эти погрешности при анализе распространения ошибки при вычислениях приписываются к приближенному числу результата и связываются между собой следующим образом: Если число a = 5,3812 имеет все разряды достоверные, то его абсолютная погрешность принимается равной половине единицы младшего разряда, т.е. =0.00005, а относительная погрешность, округляемая обычно до одного-двух значащих достоверных разрядов, будет Всякие арифметические операции с операндами, представленными в системе с плавающей точкой, в общем случае вносят в результат аналогичную относительную инструментальную погрешность: где fl(•) – указание на арифметику с плавающей точкой, – арифметическая операция из множества . Значение результата, равное нулю принудительно устанавливается в машинах при операциях умножения с двумя операндами, приводящее к исчезновению порядка (отрицательный порядок по модулю не умещается на отведенном для него количестве разрядов). Несколько иначе обстоит дело при вычитании чисел с плавающей точкой и одинаковым порядком: , . Из последнего можно заключить, что для операции вычитания относительная погрешность численно определяется количеством значащих разрядов в результате, которое из-за выполнения нормализации не может быть меньше . Т.е. погрешность приближается к 100% последовательно. Это предупреждение адресуется составителям вычислительных алгоритмов, которым необходимо выискивать эквивалентные формулы с контролем величины операндов, в определенных ситуациях можно использовать программный переход к вычислениям с удвоенной точностью. При выполнении аддитивных операций с приближенными операндами погрешность результата равна сумме абсолютных погрешностей всех чисел, участвовавших в операции. Выполнение мультипликативных операций вносит в результат относительную погрешность, равную сумме относительных погрешностей каждого из операндов. 1.2 Погрешность алгоритмов Инструментальные погрешности арифметических машинных команд из-за различия и непредсказуемости величины ошибки результата нарушают дистрибутивный, ассоциативный и коммутативный законы арифметики. Каждый же программист, составляя программу, уже на уровне интуиции пользуется ими, как незыблемыми. Отсюда различие в точности тех или иных вычислительных алгоритмов и трудно уловимые ошибки. Проследить накопление вычислительной погрешности алгоритма для операндов, которые имеют производные, удобно, если результат r каждой двуместной арифметической операции умножать на множитель с последующим разложением результирующей функции алгоритма по степеням этого множителя или этих множителей, если в группах операторов отличаются по величине. Например, для алгоритма вычисления значения полинома третьей степени по схеме Горнера с псевдокодом: P:=0; j:=3; repeat S:=a[j]*x+a [j-1]; P:=P+S*x; j:=j-1; until j=1; функция алгоритма будет: Учитывая, что , последнее выражение дает возможность после раскрытия скобок выделить из суммы и оценить сначала абсолютную погрешность, а по абсолютной погрешности – относительную: Условные арифметические операторы с проверкой равенства операндов необходимо заменять проверкой вида: . 2. Конечные разности 2.1 Определение конечных разностей Конечная разность «вперед» для таблично заданной функции в i-той точке определяется выражением: , где функция задана, как функция целочисленного аргумента с единичным шагом по аргументу i. Для аналитически заданной и протабулированной с постоянным шагом h функции определяющее соотношение имеет вид: . Преобразование таблицы функции в функцию целочисленного аргумента осуществляют при помощи линейного соотношения между аргументами x и i: . Коэффициенты a и b находят из системы уравнений, получаемой в результате подстановки в пределах заданной таблицы вместо x и i сначала начальных значений аргументов , а затем конечных . При этом начало таблицы удобно совместить с началом координат функции с целочисленным аргументом(). Тогда для таблицы с (n+1) – й строками: , Повторные конечные разности n-го порядка в i-той точке для табличной функции определяются соотношением . 2.2 Конечно-разностные операторы Линейность конечно-разностного оператора позволяет ввести конечно-разностный оператор сдвига и многочлены от оператора с целыми коэффициентами, такие, как , где должно рассматриваться как оператор повторной разности k-того порядка. Действие любого многочлена на функцию g(i) определяется как . Применение оператора сдвига к g(i) преобразует последнее в g (i+1): g (i+1) = E g(i) = (1+) g(i)= g(i) + g(i). Повторное применение оператора сдвига позволяет выразить (i+n) – е значение ординаты функции g через конечные разности различных порядков: где – число сочетаний из n элементов по k; – многочлен степени k от целой переменной n (), имеющий k сомножителей. При k=n . В силу линейности оператора сдвига можно конечно-разностный оператор выразить, как , и определить повторные конечные разности через многочлены от операторов сдвига так . Последнее позволяет формульно выражать n-ную повторную разность через (n+1) ординату табличной функции, начиная с i-той строки: Если в выражении для g (i+n) положить i=0 и вместо подставить их факториальные представления, то после несложных преобразований получится разложение функции целочисленного аргумента по многочленам , которые в литературе называют факториальными: . Можно поставить задачу разложения и функции действительной переменной f(x) по многочленам относительно начала координат (аналогично ряду Маклорена), т.е. . Если последовательно находить конечные разности от левой и правой частей, то, зная, что и , после подстановки x=0 будем получать выражения для коэффициентов разложения . У многочленов k-той степени, , поэтому . Такое разложение табличной функции f(x) в литературе называют интерполяционным многочленом Ньютона для равных интервалов. 2.3 Взаимосвязь операторов разности и дифференцирования Значение функции на удалении h от некоторой точки можно выразить через значения производных в этой точке, разложив ее в ряд Тейлора: где – оператор дифференцирования, – оператор сдвига, выраженный через оператор p. h – шаг по оси действительной переменной Из равенства операторов сдвига, выраженных через p и , можно получить взаимосвязь этих линейных операторов: , Оператор дифференцирования порядка n, перенесенный в точку, удаленную от текущей, например, на 2 шага вперед представляется так: . Выполнив алгебраическое перемножение многочленов с конечно-разностными операторами и ограничившись операторами со степенью не выше n, получим одну из возможных аппроксимаций оператора дифференцирования. Действуя таким сложным конечно-разностным оператором на ординату f(x), получаем формулу для вычисления n-й производной в точке по значениям ее конечных разностей. Например, для n=2, отбрасывая все повторные разности выше третьего порядка, получим: . Если f(x) является многочленом степени n, то повторные разности (n+1) – го порядка тождественно равны нулю. Приравнивая нулю повторные разности порядков выше n мы фактически аппроксимируем f(x) многочленом степени n. В предыдущем выражении, выразив повторные разности через ординаты табличной функции, получим еще один вид формулы для вычисления значения производной: . Для целочисленного аргумента табличной функции запись выражения можно упростить, если положить h=1 и 2.4 Исчисление конечных разностей Разложение функций в ряд по факториальным многочленам (интерполяционным многочленам Ньютона в частности) дает возможность получать формулы суммирования функциональных рядов в виде аналитических выражений, зависящих от пределов. Эта возможность открывается в связи с тем, что суммировать конечные разности не представляет большой сложности, а выразить конечную разность от факториального многочлена через факториальный же многочлен можно, воспользовавшись соотношением: Факториальные многочлены по отношению к исчислению разностей ведут себя так же, как степенные функции в исчислении производных: дифференцирование тоже понижает степень многочлена на единицу. Это свойство позволяет в факториальном разложении заменить факториальные многочлены своими конечными разностями следующего вида: Замена хороша тем, что суммирование конечных разностей в заданных пределах мнемонически весьма напоминает вычисление определенного интеграла от функции по ее первообразной: Если , то . Процедуру суммирования функционального ряда продемонстрируем на примере получения суммы квадратов натурального ряда чисел в пределах от a=1 до b=5 (Для проверки: ): Вторая сумма по переменной n представляет разложение по факториальным многочленам, в которое входят значения конечных разностей 0, 1 и 2-го порядков, вычисленные в начале координат целочисленной переменной, т.е. при x=0. Они соответственно равны: , , . После подстановки значений разностей во второй сумме останутся два факториальных полинома: первой и второй степеней: Если распределить вычисление сумм по слагаемым, то мы перейдем к суммированию конечных разностей от факториальных многочленов: Литература 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учеб. пособие. – М.: Наука, 1987. – 600 с. 2. Воеводин В.В. Численные методы алгебры. Теория и алгорифмы. – М.: Наука, 1966. – 248 с. 3. Воеводин В.В. Вычислительные основы линейной алгебры. – М.: Наука, 1977. – 304 с. 4. Волков Е.А. Численные методы. – М.: Наука, 1987. – 248 с. 5. Калашников В.И. Аналоговые и гибридные вычислительные устройства: Учеб. пособие. – Харьков: НТУ «ХПИ», 2002. – 196 с. 6. Вержбицкий, В.М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Высш.шк., 2001. 383 с. 7. Волков, Е.А. Численные методы. СПб.: Лань, 2004. 248 с. 8. Мудров, А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1991. 272 с. 9. Шуп, Т.Е. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. 255 с. 10. Бахвалов, Н.С. Численные методы в задачах и упражнениях / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. М.: Высш. шк., 2000. 192 с. |
|
|