реферат
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Курсовая работа: Расчет и проектирование воздушных линий электропередач

Курсовая работа: Расчет и проектирование воздушных линий электропередач

Содержание

Введение. 3

1 Исходные данные. 4

2 Определение физико-механических характеристик провода и троса. 5

3 Выбор унифицированной опоры.. 7

4 Расчет проводов и троса на механическую прочность. 9

4.1 Определение толщина стенки гололеда и величины скоростного напора ветра  9

4.2 Определение удельных нагрузок на провод и трос. 11

4.3 Расчет критических пролетов. 13

4.4 Расчет напряжений в проводе. 15

4.5 Определение стрелы провеса проводов и троса. 17

4.6 Определение напряжений в тросе. 18

5 Выбор изоляторов и линейной арматуры.. 21

6 Расстановка опор по профилю трассы.. 28

6.1 Построение шаблона. 28

6.2 Проверка опор на прочность. 31

7 Расчет монтажных стрел провеса провода и троса. 34

Заключение. 40

Список литературы.. 41


Введение

Проектирование механической части воздушных линий электропередачи является важной частью проектирования электроснабжения. От правильного выбора элементов ЛЭП зависит долговременная и безопасная эксплуатация линий, и, соответственно, надежное и качественное электроснабжение потребителей.

В данном курсовом проекте рассмотрены основные этапы проектирования механической части воздушных ЛЭП: выбор промежуточных опор, механический расчет проводов и грозозащитного троса, выбор линейной арматуры, произведены расстановка опор по профилю трассы и расчет монтажных стрел провеса.


1 Исходные данные

Тип ЛЭП: двухцепная воздушная линия напряжением 110 кВ, проходящая в ненаселенной местности.

Климатические условия:

район по ветру – II;

район по гололеду – IV;

температура:

высшая tmax=40°С;

низшая tmin= -10°С;

среднегодовая tср=5°С.

Тип опор: унифицированные железобетонные.

Марки провода: АС-150.

Марка грозозащитного троса: ТК-50.

Материал изоляторов: фарфор

Степень загрязненности атмосферы I.

 


2 Определение физико-механических характеристик провода и троса

Физико-механические характеристики провода и троса приведены в таблицах 2.1 и 2.2.

Таблица 2.1 - Физико-механических характеристики провода АС-150/24

Сечение, мм2:

алюминиевой части

стальной части

суммарное F

149

24,2

173,2

Диаметр провода d, мм 17,1

Количество и диаметр проволок, шт×мм:

алюминиевых

стальных

26×2,7

7×2,1

Количество повивов, шт.

алюминиевой части

стальной части

2

1

Вес провода Gп, даН/км 600
Модуль упругости Е, даН/мм2 8,25·103
Температурный коэффициент линейного удлинения α, град-1 19,2·10-6
Предел прочности, даН/мм2 29
Удельная нагрузка от собственного веса γ1, даН/(м×мм2) 3,46·10-3

Допустимое напряжение, даН/мм2

при среднегодовой температуре σt.ср

при низшей температуре σt min

при наибольшей нагрузке σγ max

8,7

13,0

13,0

Таблица 2.2 - Физико-механических характеристики троса ТК-50

Сечение, мм2:

номинальное

фактическое Fт

50

48,6

Диаметр троса dт, мм 9,1
Количество и диаметр проволок, шт×мм 19×1,8
Количество повивов, шт. 2
Вес троса Gт, даН/км 417
Модуль упругости Ет, даН/мм2 20·103
Температурный коэффициент линейного удлинения αт, град-1 12·10-6
Предел прочности, даН/мм2 120
Удельная нагрузка от собственного веса γт1, даН/(м×мм2) 8·10-3

Допустимое напряжение, даН/мм2

при среднегодовой температуре σтt.ср

при низшей температуре σтt.min

при наибольшей нагрузке σтγ.max

42

60

60

 


3 Выбор унифицированной опоры

По исходным данным выбирается тип унифицированной промежуточной опоры ПБ110-8. Основные размеры опоры показаны на рисунке 3.1, технические характеристики опоры приведены в таблице 3.1.

H=26,0м; h1=3,0м; h2=13,5м; h3=4,0м; a1=2,0м; a2=3,5м; a3=2,0м; b=3,3м

Рисунок 3.1 – Унифицированная железобетонная опора ПБ110-8

Таблица 3.1 – Технические характеристики опоры ПБ110-8

Марка провода Район по гололеду Пролет, м Масса, т
габаритный ветровой весовой
АС-150 III,IV 225 250 280 7,5

Расчетный пролет, м,

lр=α·lгаб,

где α=0,9 для ненаселенной местности;

lр=0,9·225=202,5.


4 Расчет проводов и троса на механическую прочность

4.1 Определение толщина стенки гололеда и величины скоростного напора ветра

Средняя высота подвеса проводов на опоре, м,

, (4.1)

где hi – расстояние от земли до j-ой траверсы опоры, м;

m – количество проводов на опоре;

λ – длина гирлянды изоляторов, м.

Для предварительных расчетов длина гирлянды изоляторов принимается для ВЛ 110 кВ 1,3 м.

=16,2.

Средняя высота подвеса троса на опоре, м,

=h2+2·h3+h1, (4.2)

=13,5+2·4+3=24,5.

Допустимая стрела провеса провода, м,

, (4.3)

где h2 – расстояние от земли до нижней траверсы, м;

Г – габаритный размер, м;

=6,2.

Допустимая стрела провеса троса, м,

[fт]= -(Г+2·h3+z), (4.4)

где z – наименьшее допустимое расстояние по вертикали между проводом и тросом в середине пролета, м, для lр=202,5 м z=4;

[fт]=24,5-(6+2·4+4)=6,5.

Высота приведенного центра тяжести провода и троса, м,

, (4.5)

=12;

=20,2

Толщина стенки гололеда для провода и троса, мм,

, (4.6)

где С – нормативное значение стенки гололеда, мм, (для 2-го района по гололеду С=10 мм);

 - поправочные коэффициенты на высоту и диаметр провода или троса

=9,3;

=10,2.

Скоростной напор ветра на провод и трос, даН/м2,

, (4.7)

где q – нормативный скоростной напор ветра, даН/м2;

kВ – поправочный коэффициент;

=65;

=81,25.

4.2 Определение удельных нагрузок на провод и трос

Удельная нагрузка от собственного веса, даН/(м∙мм2), берется из таблиц 2.1 и 2.2:

3,46·10-3;

8·10-3.

Удельная нагрузка от веса гололеда, даН/(м∙мм2),

, (4.8)

где d – диаметр провода или троса, мм;

F – фактическое сечение провода или троса, мм2;

g0=0,9·10-3 даН/(м∙мм2) – плотность гололедных отложений;

=4·10-3;

=11,4·10-3.

Удельная нагрузка от веса гололеда и собственного веса провода (троса), даН/(м∙мм2),

, (4.9)

·10-3=7,46·10-3;

·10-3=19,4·10-3.

Удельная нагрузка от давления ветра при отсутствии гололеда, даН/(м∙мм2),

, (4.10)

где kl – коэффициент, учитывающий влияние длины пролета на ветровую нагрузку;

kH – коэффициент, учитывающий неравномерность скоростного напора ветра по пролету;

СХ – коэффициент лобового сопротивления, равный 1,1 – для проводов диаметром 20 мм и более, свободных от гололеда; 1,2 – для всех проводов, покрытых гололедом, и для проводов диаметром меньше 20 мм, свободных от гололеда;

=5,7·10-3;

=13,1·10-3.

Удельная нагрузка от давления ветра на провод и трос при наличии гололеда, даН/(м∙мм2),

, (4.11)

где q′=0,25∙qmax для районов с толщиной стенки гололеда до 15 мм;

=4,1·10-3;

=15,1·10-3.

Удельная нагрузка от давления ветра и веса провода (троса) без гололеда, даН/(м∙мм2),

, (4.12)

·10-3=6,7·10-3;

·10-3=15,3·10-3.

Удельная нагрузка на провод от давления ветра и веса провода, покрытого гололедом, даН/(м∙мм2),

 (4.13)

=8,5·10-3;

=24,6·10-3.

4.3 Расчет критических пролетов

Первый критический пролет, м,

, (4.14)


где Е – модуль упругости, даН/мм2;

α – температурный коэффициент линейного удлинения материала провода, град-1;

lk1=.

Выражение под корнем меньше нуля. Первый критический пролет – мнимый.

Второй критический пролет, м,

, (4.15)

где tгол – температура гололеда, равная -5ºС;

γmax=γ7;

=80,4.

Третий критический пролет, м,

, (4.16)

=144,2.

В результате получается следующее соотношение критических пролетов и расчетного пролета: lк1 – мнимый, lр=202,5 м>lк3=144,2 м.

На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σ=[σγ.max]=13,0 даН/мм2, γ=γmax=8,5·10-3 даН/(м·мм2), t=tгол=-5°С.

4.4 Расчет напряжений в проводе

По уравнению состояния провода рассчитываются напряжения в проводе для режимов среднегодовой температуры – σtср, режима низшей температуры – σtmin и наибольшей нагрузки – σγmax.

Расчет напряжения в проводе для режима низшей температуры. В уравнение состояния провода подставляются все известные параметры.

, (4.17)

.

Полученное уравнение приводится к виду:

Решение полученного уравнения выполняется итерационным методом касательных. В качестве нулевого приближения принимается значение σ0=10 даН/мм2.

Производная полученной функции y=:

y’=3·σ2tmin-2·7,766·σtmin

Определяется поправка на первой итерации:

Δ1=y(σ0)/y’(σ0),

=0,378.

Новое значение напряжения:

σ1=σ0-Δ1,

σ1=10-0,377=9,623.

Проверка итерационного процесса. Для этого задается точность расчета ε=0,01 даН/мм2.

0,377>0,01,

следовательно расчет нужно продолжить, приняв в качестве нового приближения σ=9,623.

Поправка на второй итерации:

=0,025.

Новое значение напряжения:

σ2=9,623-0,025=9,598.

Выполняется проверка:

0,025>0,01.

Поправка на третьей итерации:

=0,00013.

Проверка:

0,00013<0,01,

следовательно за искомое выражение σtmin принимаем σ3:

σtmin=9,598 даН/мм2.

Расчеты напряжений в проводе для режимов среднегодовой температуры и наибольшей нагрузки выполняются с помощью программы «MERA2». В результате получены следующие значения:

σtср=7,987 даН/мм2;

σγmax=12,517 даН/мм2.

Выполняется проверка условий механической прочности:

σtср≤[σtср], 7,987<8,7;

σtmin≤[σtmin], 9,598<13,0;

σγmax≤[σγmax], 12,517<13,0.

Условия выполняются, значит механическая прочность проводов будет достаточной для условий проектируемой линии.

По уравнению состояния провода выполняются расчеты напряжений для режимов гололеда без ветра –σгол, высшей температуры – σtmax, грозового режима – σгр. Результаты расчетов следующие:

σtmax=5,475 даН/мм2;

σгол=12,277 даН/мм2;

σгр=7,129 даН/мм2.

4.5 Определение стрелы провеса проводов и троса

Определяются стрелы провеса проводов в режиме гололеда без ветра, высшей температуры и грозовом режиме, м,

, (4.18)

=3,24;

=3,11;

=2,49.

Проверка соблюдения требуемых расстояний от низшей точки провисания провода до земли по условию:

f≤[f]=6,2;

ftmax=3,24<6,2;

fгол=3,11<6,2.

Условия выполняются, значит расстояние от провода до земли будет не менее габаритного размера.

Стрела провеса грозозащитного троса в грозовом режиме, м,

, (4.19)

=2,79.

4.6 Определение напряжений в тросе

Напряжение в тросе в грозовом режиме, даН/мм2,

, (4.20)

=14,7.

В качестве исходного принимается грозовой режим с параметрами: σтгр, γт1, t=15°C. По уравнению состояния провода определяются напряжения в тросе для режимов максимальной нагрузки, низшей и среднегодовой температуры.

Расчет напряжения в тросе для режима среднегодовой температуры. В уравнение состояния провода подставляются все известные параметры.

.

Полученное уравнение приводится к виду:

.

В качестве нулевого приближения принимается значение σ0=16 даН/мм2.

Производная полученной функции

y=:

y’=3·σт2tср-2·6,979·σтtср

Определяется поправка на первой итерации:

Δ1=y(σ0)/y’(σ0),

=0,225.

Новое значение напряжения:

σ1=σ0-Δ1,

σ1=16-0,225=15,775.

Проверка итерационного процесса, ε=0,01 даН/мм2.

0,225>0,01,

следовательно расчет нужно продолжить, приняв в качестве нового приближения σ=15,775

Поправка на второй итерации:

=0,003.

Проверка:

0,003<0,01,

следовательно за искомое выражение σтtср принимаем σ1:

σтtср=15,775 даН/мм2.

В результате расчетов остальных режимов получены следующие значения:

σтγmax=31,476 даН/мм2;

σтtmin=17,606 даН/мм2.

Проверка условий механической прочности троса:

σтγmax=31,476 даН/мм2≤ [σтγmax]=60 даН/мм2;

σтtmin=17,606 даН/мм2≤ [σтtmin]=60 даН/мм2;

σтtср=15,775 даН/мм2≤ [σтtср]=42 даН/мм2.

Условия выполняются, значит выбранный провод пригоден для условий проектируемой линии.


5 Выбор изоляторов и линейной арматуры

Тип изолятора выбирается по механической нагрузке с учетом коэффициента запаса прочности, который представляет собой отношение разрушающей электромеханической нагрузки к нормативной нагрузке на изолятор. Согласно ПУЭ, коэффициенты запаса прочности в режиме наибольшей нагрузки должны быть не менее 2,7, а в режиме среднегодовой температуры – не менее 5,0.

В нормальных режимах поддерживающая гирлянда изоляторов воспринимает осевую нагрузку, состоящую из веса провода, гололеда и веса самой гирлянды.

Нагрузка для изоляторов поддерживающих гирлянд, даН,

2,7·(Gг+Gи)≤ Gэм,

5,0·(Gп+Gи)≤Gэм, (5.1)

где Gг – нагрузка на изолятор от веса провода, покрытого гололедом, даН,

Gг=γ7·F·lвес, (5.2)

где lвес=280 м – длина весового пролета;

F – общее фактическое сечение провода, мм2;

Gи – нагрузка на изолятор от веса гирлянды, даН, предварительно Gи=50 даН;

Gп – нагрузка на изолятор от веса провода, даН,

Gп=γ1·F·lвес, (5.3)

Тогда

2,7·( γ7·F·lвес+ Gи)=2,7·(8,5·10-3·173,2·280+50)=1248;

5,0·( γ1·F·lвес+ Gи)=5,0·(3,46·10-3·173,2·280+50)=1089.

Выбирается изолятор с такой разрушающей электромеханической нагрузкой, чтобы выполнялись условия (5.1). Выбирается изолятор ПФ70-В с разрушающей электромеханической нагрузкой 7500 даН:

1248<7500;

1089<7500,

т.е. условия выполняются.

Определяется число изоляторов в поддерживающей гирлянде,

n≥, (5.4)

где λэф – нормированная удельная эффективная длина пути утечки. Для степени загрязненности атмосферы I λэф=13 мм/кВ;

Uнаиб=1,15·Uном;

lэф – эффективная длина пути утечки, мм,

lэф=lут/k, (5.5)

где lут =355 мм для выбранного изолятора;

k – поправочный коэффициент,

k=, (5.6)

где D – диаметр тарелки изолятора, D=270 мм;

k==1,157;

lэф=355/1,157=306,8;

n≥=5,4.

Полученное значение округляется до шести и увеличивается на один. В итоге число изоляторов в поддерживающей гирлянде равно семи.

При выборе изоляторов натяжных гирлянд в условия (5.1) добавляется величина тяжения провода.

Нагрузка на изолятор натяжной гирлянды, даН,

, (5.7)

=5894,

=6949.

Выбирается изолятор ПФ70-В с разрушающей электромеханической нагрузкой 7500 даН:

5894<7500;

6949<7500,

т.е. условия выполняются.

Число изоляторов в натяжной гирлянде принимается на один больше, чем в поддерживающей, т.е. восемь штук. Выбор арматуры аналогичен выбору изоляторов. Коэффициент запаса прочности для условий гололеда должен быть не менее 2,5. Нагрузка на арматуру поддерживающей гирлянды, даН,

2,5·(Gг+Gи)≤ Gр, (5.8)

2,5·(8,5·10-3·173,2·280+50)=1156.

Выбирается узел крепления гирлянды к траверсе опоры КГП-7-1, серьгу СР-7-16, ушко У1-7-16 с разрушающей минимальной нагрузкой 70 кН; глухой поддерживающий зажим ПГН-3-5 с минимальной разрушающей нагрузкой 25 кН.

Нагрузка на арматуру натяжной гирлянды, даН,

, (5.9)

=5457.

Для натяжной гирлянды выбирается та же арматура что и для поддерживающей. Для натяжной гирлянды выбираем болтовой зажим.

Изолятор и линейная арматура изображены на рисунках 5.1-5.5.

Рисунок 5.1 – Изолятор ПФ70-В

Рисунок 5.2 – Узел крепления КГП-7-1


D=16 мм; А=17 мм; d=16 мм; L=80 мм; Н1=32 мм; Н=82 мм

Рисунок 5.3 – Зажим поддерживающий ПГН-3-5

L=220 мм; А=20 мм; Н=66 мм

Рисунок 5.4 – Серьга СР-7-16

D=17 мм; d=16 мм; А=65 мм; b=16 мм

Рисунок 5.5 – Ушко У1-7-16


D=17 мм;D1=19,2 мм; b=16 мм; Н=104 мм

Фактический вес поддерживающей гирлянды, даН,

, (5.10)

где Gиз – вес одного изолятора, даН;

Gарм – суммарный вес элементов арматуры, даН;

=37,81.

Фактическая длина поддерживающей гирлянды, м,

, (5.11)

где Низ – высота одного изолятора, м;

Нарм – суммарная высота элементов арматуры, м;

=1,339.

Получили λгир.ф =1,339 больше, чем принятое в расчетах λ=1,3.

Проверка соблюдения габарита.

Пересчитанная допустимая стрела провеса, м,

,

=6,161.

Проверка соблюдения требуемых расстояний от низшей точки провисания провода до земли по условию:

f≤[f]=6,161,

ftmax=3,24<6,161.

Условие соблюдается, т.е. такая длина гирлянды допустима.

Защита от вибрации осуществляется с помощью гасителей вибрации, представляющих собой два груза, закрепленных на стальном тросике (рисунок 5.6).

Рисунок 5.6 – Гаситель вибрации ГПГ-1,6-11-400/21

d=11 мм; 2R=21 мм; L=400 мм; H=78 мм

Выбор гасителя вибрации осуществляется с учетом марки и сечения провода. Выбирается гаситель вибрации ГПГ-1,6-11-400/21. Для грозозащитного троса гаситель вибрации не требуется, так как σтtср<18,0 даН/мм2.

Расстояние от зажима до места крепления виброгасителя, мм,

, (5.12)

где d – диаметр провода, мм;

Gп – вес одного метра провода, даН;

=1067,4 мм≈1,07 м.


6 Расстановка опор по профилю трассы

 

6.1 Построение шаблона

На заданном профиле трассы расстановка опор производится с помощью специальных шаблонов. Шаблон представляет собой три кривые провисания провода, сдвинутые относительно друг друга, построенные в виде парабол для режима, при котором возникает наибольшая стрела провеса. В п. 4.5 была определена максимальная стрела провеса, которая соответствует режиму максимальной температуры, fmax=3,24 м.

Кривая 1 – кривая провисания нижнего провода – строится на основе формулы стрелы провеса:

, (6.1)

где γfmax, σfmax – удельная нагрузка и напряжение в проводе в режиме, отвечающем наибольшей стреле провеса. Данная формула представляется в виде уравнения:

y=a·x2, (6.2)

где

 ; a=.

Для режима максимальной температуры уравнение примет вид:

,

Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов, представленных в виде таблицы 6.1.

Таблица 6.1 – Построение кривой 1

l 0 50 100 150 202,5
x 0 25 50 75 101,
y 0 0,27 0,79 1,78 3,24

Кривая 2, называемая габаритной, сдвинута о вертикали вниз от кривой 1 на расстояние требуемого габарита от земли Г=6 м. Кривая 3 – земляная – сдвинута от кривой 1 вниз на расстояние h2-λгир.ф=13,5-1,339=12,161 м (рисунок 6.1).

Рисунок 6.1 – Построение шаблона

Шаблон накладывают на профиль трассы так, чтобы кривая 3 пересекала профиль в месте установки первой анкерной опоры, а кривая 2 касалась его, при этом ось у должна быть строго вертикальной. Тогда другая точка пересечения кривой 3 с профилем будет соответствовать месту установки первой промежуточной опоры. При таком положении шаблона во всех точках пролета габарит будет не меньше допустимого. Аналогично находится место установки второй промежуточной опоры и т.д.

После монтажа анкерного участка в проводах происходит выравнивание напряжения, которое соответствует какому-то условному пролету. Этот пролет называется условным, и его длина, м, определяется из выражения:

, (6.3)

где li – фактическая длина i-го пролета в анкерном участке, м;

n – количество пролетов в анкерном участке;

=166.

В результате расчетов получили что lпр отличается от lр на

∙100%=18%,

что больше допустимых 5%. В таком случае заново проводится механический расчет, построение шаблона и расстановка опор на трассе. Для данного курсового проекта допускается изменить расстановку опор без проведения повторного механического расчета.

Построение нового шаблона.

,

Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов.

Таблица 6.2 – Построение кривой 1

l 0 50 100 166
x 0 25 50 83
y 0 0,27 0,79 2,18

Новая расстановка опор показана на рисунке 6.3.

Приведенный пролет, м,

=132

Проверка:

∙100%=20%.

В результате повторного расчета разница между приведенным и расчетным пролетом снова велика. Расчет повторяется до тех пор пока разница между значениями пролетов будет не более 5%.

6.2 Проверка опор на прочность

При расстановке опор по профилю трассы все они должны быть проверены на прочность в реальных условиях. Проверка выполняется сопоставлением вычисленных для каждой опоры весового и ветрового пролетов со значениями этих пролетов, указанных в технических характеристиках опоры.

Весовой пролет, м,

, (6.4)

где эквивалентные пролеты вычисляются по формулам:

-первый (большой) эквивалентный пролет, м,

, (6.5)

-второй (малый) эквивалентный пролет, м,

, (6.6),

где l – действительная длина пролета, м;

Δh – разность между высотами точек подвеса провода, м;

Смежными эквивалентными пролетами, прилегающими к опоре, могут быть и два больших или два малых эквивалентных пролета. Тогда выражение (6.4) будет иметь вид:

;

или

.

Ветровой пролет, м,

. (6.7)

Расчет для второй опоры.

=108,4;

=206,9;

=157,6;

=141,0.

Для остальных опор расчет сводится в таблицу 6.2.

Таблица 6.2 – Проверка опор на прочность

№ опоры i l'эi-1, м l”эi-1, м l’эi, м l”эi, м Δhi-1, м Δhi, м lвес, м lветр, м

1

2

3

4

5

6

7

-

-

-

-

204,3

-

-

184,3

108,4

43,1

168,0

-

104,6

148,7

205,6

206,9

200,0

-

189,4

173,3

165,0

-

-

-

143,7

-

-

-

0,55

2,23

2,99

0,86

1,54

1,82

0,58

2,23

2,99

0,86

1,54

1,82

0,58

0,41

194,9

157,6

121,5

155,8

196,8

138,9

156,8

175,5

141,0

154,5

179,0

160,5

154,0

158,5

Таким образом, для каждой опоры выполняются условия


7 Расчет монтажных стрел провеса провода и троса

Определяется исходный режим из соотношений трех критических пролетов и приведенного пролета: lк1 – мнимый, lпр=166 м>lк3=144,2 м.

На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σи=[σγ.max]=13,0 даН/мм2, γи=γmax=8,5·10-3 даН/(м·мм2), tи=tгол=-5°С.

Расчет напряжения при монтаже осуществляется с помощью уравнения

. (7.1)

Стрела провеса провода в интересующем пролете lф, м, определяется из выражения

, (7.2).

Тяжение провода, даН, рассчитывается по формуле

, (7.3)

С помощью уравнения состояния рассчитывается напряжение в проводе при температуре монтажа tmax=40°C и tmin=-10°C.

при tmax=40°C:

.

Полученное уравнение приводится к виду:

.

=5,53 даН/мм2.

Тяжение в проводе, даН,

,

=957,8.

при tmin=-10°C:

.

Полученное уравнение приводится к виду:

.

=10,74 даН/мм2.

Тяжение в проводе, даН,

=1860,2 даН.

Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м по формуле (7.2) рассчитываются стрелы провеса при максимальной и минимальной температурах, м,

lmax=194 м

=2,94;

=1,52;

lmin=125 м

=1,22;

=0,63.

Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.1.

Стрела провеса провода в габаритном пролете при температуре 15°С, м,

, (7.4)

=2,84.

Исходные данные для троса: σтгр=14,7 даН/мм2, γт1=8·10-3 даН/(м·мм2), t=15°C.

Стрела провеса троса в габаритном пролете в режиме грозы исходя из требуемого расстояния z для габаритного пролета, м,

, (7.5)

=3,104.

Определяется величина напряжения в тросе по известной величине fтгр, даН/мм2,

, (7.6)

=16,3.

Определяются напряжения в тросе при температуре монтажа из уравнения состояния, принимая в качестве исходного грозовой режим.

, (7.7)

Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м рассчитываются стрелы провеса троса, м,

, (7.8)

, (7.9)

Тяжение в тросе, даН,

, (7.10)

Расчет для температуры -10°С.

Полученное уравнение приводится к виду:

.

=20,33 даН/мм2.

Тяжение в тросе, даН,

=988 даН.

Стрела провеса при lmax=194 м, м,

=1,85.

Стрела провеса при lmin=125 м, м,

=0,77.

Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.2.

Таблица 7.1 – Монтажная таблица провода

Температура, °С Напряжение, даН/мм2 Тяжение, даН Стрела провеса в пролете длиной, м
l=194 l=125

-10

0

10

15

20

30

40

10,74

9,42

8,24

7,70

7,19

6,28

5,53

1860,2

1631,5

1427,2

1333,6

1245,3

1087,7

957,8

1,52

1,73

1,97

2,11

2,26

2,59

2,94

0,63

0,72

0,82

0,88

0,94

1,08

1,22

Таблица 7.2 – Монтажная таблица троса

Температура, °С Напряжение, даН/мм2 Тяжение, даН Стрела провеса в пролете длиной, м
194 м 125 м

-10

0

10

20

30

40

20,33

18,61

17,03

15,60

14,33

13,20

988,0

904,4

827,7

758,2

696,4

641,5

1,85

2,02

2,21

2,41

2,63

2,85

0,77

0,84

0,92

1,00

1,09

1,18

Монтажные графики для провода и троса изображены на рисунках 7.1 и 7.2.

Рисунок 7.1 – Монтажные графики для провода

Рисунок 7.2 – Монтажные графики для троса


Заключение

В данном курсовом проекте были рассмотрены основные этапы проектирования механической части воздушных ЛЭП: выполнены выбор промежуточных опор, механический расчет проводов и грозозащитного троса, выбор линейной арматуры, произведены расстановка опор по профилю трассы и расчет монтажных стрел провеса.

В ходе выполнения данного курсового проекта получены навыки пользования справочными материалами и нормативными документами, а также навыки выполнения самостоятельных инженерных расчетов с привлечением прикладного программного обеспечения персональных компьютеров.


Список литературы

1. Правила устройства электроустановок. – СПб.: Издательство ДЕАН, 2001. – 928 с.

2. Проектирование механической части воздушных ЛЭП. Учебное пособие по курсовому и дипломному проектированию. – Киров, 2004.-99 с.


© 2011 Банк рефератов, дипломных и курсовых работ.