реферат
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Курсовая работа: Паровые котлы

Курсовая работа: Паровые котлы

Министерство Образования Российской Федерации

Ивановский Государственный Энергетический Университет

Кафедра ТЭС

Курсовой проект

тема: Паровые котлы

Иваново 2003


Введение

Парогенератор ГМ-50-1.

Топочная камера обьемом 144 м  полностью экранирована трубами 60´3мм, расположенными с шагом 70 мм. Трубы фронтового и заднего экранов образуют под топки. Экраны разделены на восемь самостоятельных циркуляционных контуров.

На боковых стенах топочной камеры размещены по три основные газомазутные горелки, с фронта – две дополнительные. В барабане находится чистый отсек первой ступени испарения с внутрибарабанными циклонами. Вторая ступень вынесена в выносные циклоны Ø 377 мм.

Пароперегреватель – конвективный, горизонтального типа, змеевиковый, двухступенчатый, с шахматным расположением труб Æ 32´3 мм и поперечным шагом 75 мм. Экономайзер – стальной, гладкотрубный, змеевиковый, кипящего типа, двухблочный, с шахматным расположением труб Æ 28´3 мм. Продольный шаг – 50 мм, поперечный – 70 мм. Воздухоподогреватель - стальной, трубчатый, одноступенчатый, трехходовый, с шахматным расположением труб 40´1,5мм. Поперечный шаг труб - 60 мм, продольный – 42 мм. Технические и основные конструктивные характеристики парогенератора приведены в аннотации.


Аннотация

В данном курсовом проекте производится расчет парогенератора ГМ-50-1, исходя из следующих данных:

1. Тип котла ГМ-50-1_

2. Номинальная паропроизводительность ДК = 50 т/ч

3. Рабочее давление в барабане котла РК = 45 кгс/см2

4. Рабочее давление на выходе из пароперегревателя РПЕ = 40 кгс/см2

5. Температура перегретого пара tПЕ = 440 °С

6. Температура питательной воды tПВ = 140 °С

7. Температура уходящих газов tУХ = 150 °С

8. Температура горячего воздуха tГВ = 220 °С

9. Вид и марка топлива мазут м/с (№ 96)

10. Тип топочного устройства: камерная.

В результате произведенного расчета в конструкцию парового котла внесены следующие изменения:

В пароперегревателе добавлены две петли.

Расчётная поверхность пароперегревателя – 296,26 м.

В экономайзере убрана одна петля во втором пакете.

Расчётная поверхность экономайзера – 412,65 м.

Высота газохода для размещения экономайзера – 2,425 м.

Расчётная поверхность ВЗП - 1862,88 м.

Число ходов по воздуху n = 3.

Высота хода по воздуху h = 2,161 м.


Последовательность пуска котла

1.  Внешний осмотр (исправность горелок, вентиляторов, дымососов; топка, газоходы, арматура (запорная, регулирующая); КИП; автоматика, подвод напряжения ).

2.  Открывают воздушники, линию рециркуляции ЭКО, линию продувки пароперегревателя, закрывают дренажи, клапан непрерывной продувки, главные паровые задвижки 1 и 2.

3.  Котел заполняют деаэрированной водой с температурой 60-70 и контролируют разность температур

Время заполнения водой 1-1,5ч. Заполнение заканчивается, когда вода закрывает опускные трубы.

4.  Включают дымосос и вентилируют топку и газоходы 10-15 мин.

5.  Устанавливают разряжение

 

и включают мазутные растопочные форсунки

,

чтобы при отсутствии пара

6.  При появлении пара из воздушников-2, их закрывают.

7.  Растопочный пар, расхолаживая пароперегреватель, выводиться через линии продувки пароперегревателя.

8.  Продувают воздухоуказательные колонки и экранную систему.

9.  При открывают ГПЗ–1, закрывают линии продувки пароперегревателя, прогревают соединительный паропровод, выпуская пар через растопочный расширитель.

10.  Периодически подпитывают барабан водой и контролируют уровень воды.

11.  Увеличивают расход топлива до

При включают непрерывную продувку. При открывают растопочные РОУ, закрывают растопочный расширитель.

При  и увеличивают нагрузку до 40%, открывают ГПЗ-2 и включают котел в магистраль.

Переходят на основное топливо и увеличивают нагрузку до номинальной. Включают автоматику.

Плановый останов котла

1.  Предупреждают турбинное отделение о снижении нагрузки

2.  Плавно снижают нагрузку до 40%.

3.  Прекращают подачу топлива и гасят топку.

4.  Вентилируют топку и газоходы 15 мин.

5.  Продувают трубную систему через дренажи. Через 8-14 часов продувку повторяют.

6.  Продувку пара осуществляют сначала через растопочное РОУ, потом через растопочный расширитель, а затем через линию продувки парогенератора.

7. Переодически подпитывая котел, следят за уровнем, чтобы Tcт(верх) - Тст(ниж) < 40 оС.

8. Скорость расхолаживания < 0,3 (оС/мин)

9. При температуре воды tв =50 оС и Р = 1 атм открывают дренажи и котел опорожняют, после чего выводят в ремонт.

Элементы парового котла Газоходы Величина присоса a
Топочная камера Топки паровых котлов для жидкого топлива 0,05
Котельные пучки Фестон 0
Пароперегреватели Первичный пароперегреватель 0,03
Экономайзеры Для котлов D£50т/ч 0,08
Воздухоподогреватели(трубчатые) Для котлов D£50т/ч 0,06

Коэффициенты избытка воздуха за каждым газоходом, а также их средние значения:

Газоходы

Коэффициент избытка воздуха за газоходом a’’

Величина

присоса Da

Средний коэффициент избытка воздуха в газоходе a

1

Топка и фестон

2

Пароперегре-ватель =1,13

3

Экономайзер =1,21

4

Воздухоподо-греватели  +0,06=1,27

2. Топливо и продукты горения

Вид топлива: Мазут малосернистый (№96)

Wp

Ap

 Sp

Сp

 Нp

Np

Op

Qp H

3,0 0,05 0,3 84,65 11,7 - 0,3 9620

Объёмы воздуха и продуктов горения при a=1,0 и 760 мм.рт.ст.:

Расчитываем приведённую влажность WП и зольность АП

Для контроля проверим баланс элементарного состава:

CP+ HP+ SP+ NP+ OP+ AP+ WP=100%

84,65%+11,7%+0,3%+0,3%+0,05%+3,0%=100%

При a>1 объёмы продуктов горения, объёмные доли трёхатомных газов и водяных паров, безразмерную концентрацию золы, массу газов, их плотность расчитывают по всем газоходам для средних и конечных значений a.

Объёмы и массы продуктов горения, доли трёхатомных газов и водяных паров


Величина Единицы

АР=0,05%

Газоходы
Топка и фестон Паропере-греватель Экономай- зер Воздухопо- догреватель
1

Коэф избытка воздуха за газоходом a’’

- 1,1 1,13 1,21 1,27
2 Средний коэф избытка воздуха в газоходе a - 1,1 1,115 1,17 1,24

3

м3/кг

за 1,5271 - - 1,5562
ср - 1,5297 1,5391 1,5510

4

м3/кг

за 12,5591 - - 14,3936
ср - 12,7210 13,3145 14,0698

5

 -- за 0,1258 - - 0,1098
ср - 0,1242 0,1187 0,1123
6  -- за 0,1216 - - 0,1081
ср - 0,1202 0,1156 0,1102

7

 -- за 0,2474 - - 0,2179
ср - 0,2445 0,2343 0,2225
8 кг/кг За 16,2562 - - 18,6140
Ср - 16,4642 17,2271 18,1980

9

кг/м3

За 1,2944 - - 1,2932
Ср - 1,2943 1,2939 1,2934

Энтальпию золы учитывают только в том случае, если приведённая зольность уноса золы из топки удовлетворяет условию (долю золы уносимую газами принимаем

аун=0,95=95%):

Энтальпии воздуха и продуктов горения по газоходам парового котла (ккал/кг)

газоход

Тем-ра газов

Топка и фестон (при aт’’)

2200 10218 8628 862,8 11080,80 -
2100 9701 8203 820,3 10521,30 559,50
2000 9187 7778 777,8 9964,80 556,50
1900 8676 7353 735,3 9411,30 553,50
1800 8168 6928 692,8 8860,80 550,50
1700 7665 6514 651,4 8316,40 544,40
1600 7163 6099 609,9 7772,90 543,50
1500 6664 5684 568,4 7232,40 540,50
1400 6170 5270 527 6697,00 535,40
1300 5679 4856 485,6 6164,60 532,40
1200 5193 4452 445,2 5638,20 526,40
1100 4719 4048 404,8 5123,80 514,40
1000 4248 3645 364,5 4612,50 511,30
900 3779 3252 325,2 4104,20 508,30

Паропе-регреватель при aпе’’

700 2862 2486 323,18 3185,18 -
600 2421 2106 273,78 2694,78 490,40
500 1994 1736 225,68 2219,68 475,10
400 1573 1375 178,75 1751,75 467,93

Эконо-майзер при aэк’’

500 1994 1736 364,56 2358,56 -
400 1573 1375 288,75 1861,75 496,81
300 1163 1022 214,62 1377,62 484,13

Воздухо-ль при aвп’’=aух

300 1163 1022 275,94 1438,94 -
200 766 676 182,52 948,52 490,42
100 379 336 90,72 469,72 478,80

3. Определение расчётного расхода топлива

3.1 Располагаемое тепло топлива Qрр находим по формуле:

Qрр=Qрн+Qв.вн+iтл

 

3.2 Величину тепла, вносимого воздухом, подогреваемом вне парового котла, Qв.вн

Учитывают только для высокосернистых мазутов. Топливо проектируемого котла - малосернистый мазут. где (Ioв)’ при t’вп =100 oC Þ (Ioв)’=322 ккал/кг;

3.3 Величину физического тепла топлива находим по формуле:

iтл= Cтл tтл, где tтл =100 oC; Cтл =0,415+0,0006×tтл=0,415+0,0006×100=0,475 ккал/(кг× oC);

iтл= 0,475×100=47,5 ккал/кг;

Расход топлива используют при выборе и расчёте числа и мощности горелочных устройств. Тепловой расчёт парового котла, определение объёмов дымовых газов и воздуха, количество тепла, отданного продуктами горения поверхностям нагрева, производятся по расчётному расходу фактически сгоревшего топлива с учетом механической неполноты горения:


4. Выбор схемы сжигания топлива

Схему топливосжигания выбирают в зависимости от марки и качества топлива. Подготовка к сжиганию мазута заключается в удалении из него механических примесей, повышении давления и подогрева для уменьшения вязкости.

В проектируемом паровом котле установлены горелки (в количестве трёх штук) с механическими форсунками суммарной производительностью 110¸120% от паропроизводительности котла; мазут подогревают до 100¸130оС. Скорость воздуха в самом узком сечении амбразуры должна быть 30¸40 м/с.


5. Поверочный расчёт топки

Задачей поверочного расчёта является определение температуры газов на выходе из топки Jт’’ при заданных конструктивных размерах топки, которые определяют по чертежам парового котла.

5.1 Определение конструктивных размеров и характеристик топки

По чертежу парового котла определяем размеры топки и заполняем таблицу

Наименование величин Обозн. Раз-ть Источник или формула Топочные экраны Выход-ное окно
Фронтовой Боко-вой Задний

Осн.

часть

Под

Осн.

часть

Под
1 Расчётная ширина экранированной стенки

bст

м

чертёж или

эскиз

5,0 5,0 3,5 5,0 5,0 5,0
2 Освещённая длина стен

lст

м

чертёж или

эскиз

9,075 1,675 - 7,05 1,85 2,05
3 Площадь стены

Fст

м2

bст ·lст

45,5 8,375 30,014 35,125 9,25 10,25
4 Площадь стен, не занятых экранами

Fi

м2

чертёж или

эскиз

- - 0,9202 - - -
5

Наружный диаметр

труб

d м

чертёж или

эскиз

0,06
6 Число труб Z шт -²- 70 70 49 70 70 -
7 Шаг труб S м -²- 0,07 0,07 0,07 0,07 0,07 -
8 Отн. шаг труб S/d - - 1,1667
9 Расстояние от оси до обмуровки е м -²- 0,1 0,1 0,1 0,065 0,065 -
10 Относ. -²- e/d - - 1,667 1,667 1,667 1,0833 1,0833 -
11 Угловой к-т экрана X - номо-грамма 0,99 0,99 0,99 0,985 0,985 1
12 К-т загрязнения x - таблица 0,55 0,55 0,55 0,55 0,55 0,55
13 К-т тепловой эффективности экрана y - Cžx 0,5445 0,5445 0,5445 0,54175 0,54175 0,55

Среднее значение коэффициента тепловой эффективности для топки в целом определяют по формуле:

Активный объём топочной камеры определяют по формуле:

Эффективная толщина излучающего слоя:

5.2 Расчёт теплообмена в топке

Расчёт основан на приложении теории подобия к топочным процессам. Расчётная формула связывает температуру газов на выходе из топки qт’’ с критерием Больцмана Bo, степенью черноты топки ат и параметром М, учитывающим характер распределения температур по высоте топки и зависящим от относительного местоположения максимума температур пламени, который определяется схемой размещения и типом горелок.


При расчёте теплообмена используют в качестве исходной формулу:

Где Tт’’ = Jт’’ + 273 - абсолютная температура газов на выходе из топки, [K]; Ta = Ja + 273 -температура газов, которая была бы при адиабатическом сгорании топлива, [K]; Bо – критерий Больцмана, определяемый по формуле:

Из этих формул выводятся расчетные.

Определяем полезное тепловыделение в топке Qт и соответствующую ей адиабатическую температуру горения Та :

 

Коэффициент ослабления лучей kг топочной средой определяют по номограмме.

Коэффициент ослабления лучей kс сажистыми частицами определяют по формуле:


6. Поверочный расчёт фестона

В котле, разрабатываемом в курсовом проекте, на выходе из топки расположен трёхрядный испарительный пучок, образованный трубами бокового топочного экрана, с увеличенным поперечными и продольными шагами и называемый фестон. Изменение конструкции фестона связано с большими трудностями и капитальными затратами, поэтому проводим поверочный расчёт фестона. Задачей поверочного расчёта является определение температуры газов за фестоном Jф’’ при заданных конструктивных размерах и характеристиках поверхности нагрева, а также известной температуре газов перед фестоном, т.е на выходе из топки.

Наименование величин Обозн. Раз-ть Ряды фестона Для всего фестона
1 2 3
Наружный диаметр труб d м 0,06
Количество труб в ряду

z1

-- 23 23 24 -
Длина трубы в ряду

lI

м 2,3 2 1,275 -
Шаг труб: поперечный

S1

м 0,21 0,21 0,21 0,21
 продольный

S2

м - 0,35 0,775 0,5197
Угловой коэф фестона

- - - - 1
Расположение труб - - шахматное
Расчётная пов-ть нагрева H

м2

9,966 8,666 5,765 24,3977

Размеры газохода:

высота

aI

м 2,25 2,05 1,275 -
ширина b м 5 5 5 -
Площадь живого сечения F

м2

8,283 7,611 4,539 6,7646

Относительный шаг труб:

поперечный

S1/d

- 3,5 3,5 3,5 3,5
 продольный

S2/d

- - 5,833 12,92 8,6616

Длину трубы в каждом ряду li определяем по осевой линии трубы с учётом её конфигурации от плоскости входа трубы в обмуровку топки или изоляцию барабана до точки перечения оси трубы каждого ряда с плоскостью ската горизонтального газохода. Количество труб в ряду z1 определяют по эскизу, выполнив по всей ширине газохода разводку труб экрана в фестон.

Поперечный шаг S1 равен утроенному шагу заднего экрана топки, т.к. этот экран образует три ряда фестона. Поперечные шаги для всех рядов и всего фестона одинаковы. Продольный шаг между первым и вторым рядами определяют как кратчайшее расстояние между осями труб этих рядов S2’, а между вторым и третьим рядами S2’’ как длину отрезка между осями труб второго и третьего рядов, соединяющего их на половине длины труб. Среднее значение продольного шага для фестона определяют с учетом расчетных поверхностей второго и третьего рядов труб, существенно различающихся по величине:

Принимаем xф = 1, тем самым увеличиваем конвективную поверхность пароперегревателя (в пределах 5%), что существенно упрощает расчёт.

По S1ср и S2ср определяем эффективную толщину излучающего слоя фестона Sф расположение труб в пучке – шахматное, омывание газами – поперечное (угол отклонения потока от нормали не учитываем). Высоту газохода ‘а’ определяют в плоскости, проходящей по осям основного направления каждого ряда труб в границах фестона. Ширина газохода ‘b’ одинакова для всех рядов фестона, её определяют как расстояние между плоскостями, проходящими через оси труб правого и левого боковых экранов.

Площадь живого сечения для прохода газов в каждом ряду:

Fi = ai×b - z1× liпр×d; где liпр – длина проекции трубы на плоскость сечения, проходящую через ось труб расчитываемого ряда.

Fср находим как среднее арифметическое между F1 и F3.

Расчётная поверхность нагрева каждого ряда равна геометрической поверхности всех труб в ряду по наружному диаметру и полной обогреваемой газами длине трубы, измеренной по её оси с учётом конфигурации, т.е гибов в пределах фестона:

Нi = p×d×z1i× li; где z1i – число труб в ряду; li – длина трубы в ряду по её оси. Расчётная поверхность нагрева фестона определяют как сумму поверхностей всех рядов:

Нф = Н1 + Н2 + Н3 = 9,966+8,666+5,765 = 24,3977 м;

На правой и левой стене газохода фестона расположена часть боковых экранов, поверхность которых не превышает 5% от поверхности фестона:

Ндоп = SFст·xб = (1,7062 + 1,7062)·0,99 = 3,3782 Þ Нф’ = Нф + Ндоп = 27,776 м;

Составляем таблицу исходных данных для поверочного теплового расчёта фестона.

Ориентировочно принимают температуру газов за фестоном на 30¸1000С ниже, чем перед ним:

Наименование величин Обозначение Размерность Величина
Температура газов перед фестоном

Jф’=Jт’’

1053,4
Энтальпия газов перед фестоном

I ф’=I т’’

ккал/кг 4885,534

Объёмы газов на выходе из топки при a¢¢т

м3/кг

12,559
Объёмная доля водяных паров

rH2O

-- 0,1216
Объёмная доля трёхатомных газов

rRO2

-- 0,2474

Температура состояния насыщения

при давлении в барабане Рб=45кгс/см2

256,23

7. Определение тепловосприятий пароперегревателя, экономайзера, воздухоподогревателя и сведение теплового баланса парового котла

При выполнении расчёта в целях уменьшения ошибок и связанных с ними пересчётов до проведения поверочно-конструкторских расчётов пароперегревателя целесообразно определить тепловосприятия этих поверхностей по уравнениям теплового баланса и свести тепловой баланс по паровому котлу в целом.

Тепловосприятия пароперегревателя и воздухоподогревателя определяют по уравнениям теплового баланса рабочего тела (пара, воздуха), а тепловосприятие экономайзера – по уравнению теплового баланса теплоносителя (продуктов сгорания).

Тепловосприятие пароперегревателя определяют по формуле:

Находим при Pпе=40 кгс/см2 и tпе=440oC Þ iпе=789,8 ккал/кг;      при Pб=45 кгс/см2 и температуре насыщения Þ iн=668,1 ккал/кг;    Diпо=15 ккал/кг;

Тепло, воспринимаемое пароперегревателем за счёт излучения факела топки, принимаем для упрощения расчётов равным нулю(Qпел =0), а угловой коэффициент фестона Хф=1. В этом случае полное тепловосприятие пароперегревателя численно совпадает с тепловосприятием конвекцией: Qпек = Qпе.

Полученное значение энтальпии газов за пароперегревателем позволяет определить температуру дымовых газов за ним u²пе=601,520С;

Тепловосприятие воздухоподогревателя определяют по уравнению теплового баланса рабочего тела (воздуха), т.к. температура горячего воздуха (после воздухоподогревателя) задана. Тепловосприятие воздухоподогревателя зависит от схемы подогрева воздуха. Т.к. предварительный подогрев воздуха, и рециркуляция горячего воздуха отсутствуют, то тепловосприятие воздухоподогревателя определяем:

где Iогв находим по tгв=220oC Þ Iогв=745,2 ккал/кг;

b²вп – отношение объёма воздуха за воздухоподогревателем к теоретически необходимому:

Тепловосприятие воздухоподогревателя по теплоносителю (продуктам сгорания) имеет вид:

где Iух – энтальпия уходящих газов, которую находим по tух=150oC Þ Iух=709,135 ккал/кг;

 Iоух – энтальпия теоретического объёма воздуха, которую при


tпрс=( tгв + t’в)/2=(220+30)/2=125 oC Þ Iпрс=421 ккал/кг;

Полученное значение энтальпии газов за экономайзером позволяет определить температуру дымовых газов за ним u²эк=301,870С;

Тепловосприятие водяного экономайзера определяют по уравнению теплового баланса теплоносителя (дымовых газов):

Определяем невязку теплового баланса парового котла:


8. Поверочно-конструкторский расчёт пароперегревателя

Целью поверочно-конструкторского расчёта пароперегревателя является определение его поверхности нагрева при известных тепловосприятиях, конструктивных размерах и характеристиках. Тепловосприятие пароперегревателя определено ранее, конструктивные размеры и характеристики поверхности заданы чертежом. Решением уравнения теплопередачи определяют требуемую (расчётную) величину поверхности нагрева пароперегревателя, сравнивают её с заданной по чертежу и принимают решение о внесении конструктивных изменений в поверхность.

По чертежам парового котла составляем эскиз пароперегревателя в двух проекциях на миллимет-ровой бумаге в масштабе 1:25.

По чертежам и эскизу заполняем таблицу:

Конструктивные размеры и характеристики пароперегревателя

 

Наименование величин Обозн. Раз-ть Величина
Наружный диаметр труб d м 0,032

 

Внутренний диаметр труб

dвн

м 0,026

 

Количество труб в ряду

z1

- 68

 

Количество труб по ходу газов

z2

- 18

 

Шаг труб: поперечный

S1

м 0,075

 

 продольный

S2

м 0,055

 

Относительный шаг труб

поперечный

S1/d

- 2,344

 

 продольный

S2/d

- 1,719

 

Расположение труб змеевика - - шахматное

 

Характер взаимного течения - - перекрестный ток

 

Длина трубы змеевика l м 29,94

 

Поверхность, примыкающая к стенке

Fст×х

м2

21,353

 

Поверхность нагрева H

м2

226,01

 

Размеры газохода: высота на входе высота на выходе

м

м

1,68

 

ширина b м 5,2

 

Площадь живого сечения на входе

м2

5,363

 

Площадь живого сечения на выходе

м2

5,363

 

Средняя площадь живого сечения

Fср

м2

5,363

 

Средняя эффективная толщина излучающего слоя

м 0,119

 

Глубина газового объёма до пучка

lоб

м 1,35

 

Глубина пучка

lп

м 0,935

 

Количество змеевиков, включённых параллельно по пару m шт. 68

 

Живое сечение для прохода пара f

м2

0,0361

Поверхность нагрева для каждой ступени пароперегревателя определяют по наружному диаметру труб, полной длине змеевика (с учётом гибов) l и числу труб в ряду (поперёк газохода) z1. В неё также включается поверхность труб, примыкающих к обмуровке, называемая дополнительной, которую определяют как произведение площади стены (потолка) Fст, занятой этими трубами, на угловой коэффициент х, определяемый по номограмме на основании соотношений S1/d и е/d причём е/d @ r/d =0,5 Þ х=0,75. Таким образом, с учётом особенностей конструкции пароперегревателей поверхность нагрева определяем по формуле:

Н = p×d×z1× l + Fст ×х.

Глубину газового объёма до пучка и глубину пучка определяют по рекомендациям и чертежу.

По значениям шагов для пароперегревателя и диаметру труб находим эффективную толщину излучающего слоя:

Площадь живого сечения для прохода газов на входе и выходе определяют по формуле:


F = a ·b – d·z1· lпр = 1,68·5,2 – 68·0,032·1,55 = 5,363 (м2);

Площадь живого сечения для прохода пара:

Составляем таблицу исходных данных поверочно-конструкторского теплового расчёта пароперегревателя:

Наименование величин Обознение Размерность Величина

Температура газов до пароперегревателя

uф²

998,4
Температура газов за пароперегревателя

uпе²

601,52
Температура в состояния насыщения

256,23
Температура перегретого пара

tпе

440
Средний удельный объём пара

uср

м3/кг

0,062615
Конвективное восприятие

Qkпе

ккал/кг 1886,41

Объёмы газов на выходе из топки при aсрпе

м3/кг

12,721
Объёмная доля водяных паров

rH2O

- 0,1202
Объёмная доля трёхатомных газов

rRO2

- 0,2445

Средний удельный объём пара находят по удельным объёмам пара в состоянии насыщения и перегретого пара:

Все остальные величины определены ранее.

Коэффициент теплопередачи определяют для пароперегревателя в целом по средним значениям необходимых величин из таблиц.

Коэффициент теплопередачи от газов к стенке для всех схем пароперегревателей определяют по формуле:

Коэффициент теплоотдачи от газов к стенке для всех схем пароперегревателей определяют по формуле:

Для определения aк - коэффициента теплоотдачи конвекцией от газов к стенке труб, рассчитаем среднюю скорость газового потока:


При поперечном омывании шахматных пучков дымовыми газами коэффициент теплоотдачи конвекцией, отнесённый к полной расчётной поверхности, определяют по номограмме: aн=80 ккал/м2×ч×оС; добавочные коэффициенты:

Сz=1; Сф=0,98; Сs=1; Þ aк = aн×Сz×Сф×Сs = =80×1×0,98×1 = 78,4 ккал/м2×ч×оС;

Для нахождения aл используем номограммы и степень черноты продуктов горения ‘a’:

Для незапылённой поверхности

k×p×S = kг×rn×S×p, где р = 1кгс/ см2; rn=0,2445;

рn×S = rn×S = 0,2445×0,119 = 0,0291.

Для пользования номограммой необходимо знать температуру загрязнённой стенки расчитываемой поверхности нагрева:    

tз = tпеср + (80¸100) = 348,12 + 90 = 438,12 оС;

По номограмме находим

Сг = 0,95; aн = 130 ккал/м2×ч×оС; Þ aл = aн×а×Сг = 130×0,95×0,0926 = 11,437 ккал/м2×ч×оС;

При расчёте пароперегревателя и экономайзера на величину aл необходимо ввести поправку, связанную с наличием газового объёма,
свободного от труб перед этими поверхностями и между отдельными пакетами поверхностей:

Коэффициент теплоотдачи от стенки к пару в пароперегревателе определяют по номограмме, при среднем значении давлений, температур и скорости пара:

При этой скорости пара

Сd = 1,02; aн = 1300 ккал/м2×ч×оС;Þ aл = aн×Сd = 1300×1,02 = 1326 ккал/м2×ч×оС;

Определим расчётную поверхность:


9. Поверочно-конструкторский расчёт хвостовых поверхностей нагрева

9.1 Расчёт водного экономайзера

С использованием ранее выполненых расчётов для теплового расчёта экономайзера составляют таблицу исходных данных:

Наименование величин Обознение Размерность Величина

Температура газов до экономайзера

uпе²

601,52
Температура газов за экономайзером

uэк²

301,865
Температура питательной воды

Tпв

140
Давление пит. воды перед экономайзером

Р¢эк

кгс/см2

48,6
Энтальпия питательной воды

iпв

ккал/кг 141,3
Тепловосприятие по балансу

Qбэк

ккал/кг 1310,63
Объёмы газов при среднем избытке воздуха

м3/кг

13,3145
Объёмная доля водяных паров

rH2O

- 0,1156
Объёмная доля трёхатомных газов

rRO2

- 0,2343

Примечание: Давление воды перед водяным экономайзером для паровых котлов среднего давления принимают Р¢эк = 1,08×Рб.

Предварительно определяют тип водяного экономайзера (кипящий или некипящий) по значению энтальпии рабочей среды за экономайзером:

Энтальпию и температуру воды после водяного экономайзера определяют из уравнения теплового баланса по рабочему телу (воде):

Где Dэк – пропуск воды через экономайзер, кг/ч; при поверхностных пароохладителях Dэк = Dпе =D;

i²эк – энтальпия воды после водяного экономайзера, ккал/кг; i¢эк – энтальпия воды перед водяным экономайзером, ккал/кг.

По чертежам парового котла составляем эскиз экономайзера в двух проекциях на миллиметровой бумаге в масштабе 1:25, на котором указываем все конструктивные размеры.

По чертежам и эскизу заполняем таблицу.

Конструктивные размеры и характеристики экономайзера

 

Наименование величин Обозн Раз-ть Величина
Наружный диаметр труб d м 0,028

 

Внутренний диаметр труб

dвн

м 0,022

 

Количество труб в ряду

z1

-- 25

 

Количество рядов труб по ходу газов

z2

-- 40

 

Шаг труб:

поперечный

S1

м 0,07

 

продольный

S2

м 0,05

 

Относительный шаг труб

поперечный

S1/d

-- 2,5

 

продольный

S2/d

-- 1,786

 

Расположение труб змеевика -- -- шахматное

 

Характер взаимного течения -- -- противоток

 

Длина горизонтальной части петли змеевика

l1

м 5,1

 

Длина проекции одного ряда труб на горизонтальную плоскость сечения

lпр

м 5,2

 

Длина трубы змеевика l м 104,83

 

Поверхность нагрева ЭКО (по чертежу)

Hэк ч

м2

461,06

 

Глубина газохода а м 1,78

 

Ширина газохода b м 5,4

 

Площадь живого сечения для прохода газов

м2

5,972

 

Средняя эффективная толщина излучающего слоя

м 0,118

 

Глубина газового объёма до пучка

lоб

м 2

 

Глубина пучка

lп

м 1,9

 

Количество змеевиков, включённых параллельно по пару m шт. 50

 

Живое сечение для прохода пара f

м2

0,019

Коэффициент теплопередачи для экономайзера в целом определяют по средним значениям необходимых величин.

Для определения aк - коэффициента теплоотдачи конвекцией от газов к стенке труб, рассчитаем среднюю скорость газового потока:

При поперечном омывании шахматных пучков дымовыми газами коэффициент теплоотдачи конвекцией, отнесённый к полной расчётной поверхности, определяют по номограмме 13: aн=60 ккал/м2×ч×оС; добавочные коэффициенты:

Сz=1; Сф=1; Сs=1; Þ aк = aн×Сz×Сф×Сs = 63×1×1×1 = 60 ккал/м2×ч×оС;

Для нахождения aл используем номограмму 19 и степень черноты продуктов горения ‘a’:

Для незапылённой поверхности k×p×S = kг×rn×S×p, где р = 1кгс/ см2; rn=0,2343.

рn×S = rn×S = 0,2343×0,118 = 0,02765;

По номограмме находим kг = 3,4; Þ

Для пользования номограммой необходимо знать температуру загрязнённой стенки расчитываемой поверхности нагрева:    

tз = 0,5×(t¢эк + t²эк ) + (40¸60) = 0,5×(154,56+242,96) + 50 = 248,76 оС;


По номограмме находим

Сг=0,97; aн=100 ккал/м2×ч×оС; Þ aл = aн×а×Сг =100×0,0897×0,97= 8,7 ккал/м2×ч×оС;

При расчёте экономайзера на величину aл необходимо ввести поправку, связанную с наличием газового объёма, свободного от труб перед этими поверхностями и между отдельными пакетами поверхностей:

9.2 Расчёт воздушного подогревателя

По чертежам парового котла составляем эскиз воздухоподогревателя в двух проекциях на миллиметровой бумаге в масштабе 1:25, на котором указывают все конструктивные размеры.

По чертежам и эскизу заполняем таблицу:

Конструктивные размеры и характеристики воздухоподогревателя

 

Наименование величин Обозн Раз-ть Величина
Наружный диаметр труб d м 0,04

 

 

Внутренний диаметр труб

dвн

м 0,037

 

Количество труб в ряду

z1

- 72

 

Количество рядов труб по ходу газов

z2

- 33

 

Шаг труб:

поперечный

S1

м 0,056

 

продольный

S2

м 0,042

 

Относительный шаг труб:

поперечный

S1/d

- 1,4

 

продольный

S2/d

- 1,05

 

Расположение труб - - шахматное

 

Характер омывания труб газами - - продольный

 

Характер омывания труб воздухом - - поперечный

 

Число труб, включённых параллельно по газам

z0

- 2376

 

Площадь живого сечения для прохода газов

м2

2,555

 

Ширина газохода b м 4,144

 

Высота одного хода по воздуху (заводская)

м 2,1

 

Площадь живое сечение для прохода воздуха

м2

2,6544

 

Поверхность нагрева ВЗП

Hвп

м2

2413,99

Примечание: Трубчатые воздухоподогреватели, как правило, выполняются с вертикальным расположением труб в газоходе, внутри которых движутся газы, а воздух омывает шахматно расположенный пучок труб снаружи, омывание поперечное; взаимное движение сред характеризуется перекрёстным током. Число ходов воздуха не меньше двух. Расчётно определим число труб, включенных параллельно по газам:

Площадь живого сечения для прохода газа:

Площадь живого сечения для прохода воздуха (по заданной заводской конструкции):

Поверхность нагрева ВЗП:

С использованием ранее выполненых расчётов для теплового расчёта ВП составляют таблицу исходных данных:

Наименование величин Обознение Размерность Величина

Температура газов до воздухоподогревателя

uэк²

301,87
Температура газов за воздухоподогревателем

uух

150
Температура воздуха до воздухоподогревателя

t¢в

30

Температура горячего воздуха после

воздухоподогревателя

tгв

220
Объёмы газов при среднем избытке воздуха

м3/кг

14,0698
Теоретический объём воздуха

V0

м3/кг

10,62
Температура воздуха до воздухоподогревателем к теоретически необходимому

b²вп

-- 1,05
Объёмная доля водяных паров

rH2O

-- 0,1102
Тепловосприятие по балансу

Qбвп

ккал/кг 695,85

Находим скорости газов и воздуха:

Скорости газов и воздуха должны быть в пределах допустимых нормативных значений в зависимости от вида топлива и характеристик зол. В курсовом проекте допустимая скорость газов составляет: Wг=12±3 м/с, а Wв = (0,5¸0,6)×Wг = 5,07¸6,08 м/с, однако полученная скорость воздуха больше допустимой Þ принимаем Wв’=6,08 м/c.

Коэффициент теплопередачи для воздухоподогревателя в целом определяют по средним значениям необходимых величин. где x = 0,7

Коэффициент теплоотдачи от газов к стенке для воздухоподогревателя определяют по формуле:

При продольном омывании трубной поверхности дымовыми газами коэффициент теплоотдачи конвекцией, отнесённый к полной расчётной поверхности, определяют по номограмме 14: aн=29 ккал/м2×ч×оС; добавочные коэффициенты:


Сф=1,1; Сl=1; Þaк = aн×Сф×Сl = 29×1,1×1 = 31,9 ккал/м2×ч×оС;

При поперечном омывании шахматных пучков дымовыми газами коэффициент теплоотдачи конвекцией, отнесённый к полной расчётной поверхности, определяют по номограмме 13:

aн= 56 ккал/м2×ч×оС; добавочные коэффициенты:

Сz=1; Сф=0,98; Сs=1; Þaк = aн×Сz×Сф×Сs = 56×1×0,98×1 = 54,88 ккал/м2×ч×оС;

Температурный напор:

Þ температурный напор можно найти как:


Список литературы

1)  Тепловой расчёт котельных агрегатов. (Нормативный метод)/Под редакцией Н.В. Кузнецова. – М.: Энергия, 1973. –296с.

2)  Резников М.И. Парогенераторные установки электростанций. – М.: Энергия, 1974. –360с.

3)  Методические указантя по определению коэффициента полезного действия паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново, 1987. –36с.

4)  Методические указантя по определению коэффициента теплопередачи и температурного напора при расчёте поверхностей нагрева паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново; ИЭИ, 1987.

5)  Методические указантя по поверочному расчёту топочной камеры и фестона паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново; ИЭИ, 1987.

6)  Методические указантя по конструкторскому расчёту пароперегревателя и хвостовых поверхностей паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново; ИЭИ, 1991. –36с.

7)  Александров В.Г. Паровые котлы средней и малой мощности. –Л.: Энергия, 1972.—200с.

8)  Ковалёв А.П., Лелеев Н.С., Виленский Т.В. Парогенераторы: Учебник для ВУЗов. –М.: Энерго- атомиздат, 1985. –376с.


© 2011 Банк рефератов, дипломных и курсовых работ.